operator.h 12.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
53
class OperatorBase;
54 55
class InferShapeContext;
class ExecutionContext;
56

Q
Qiao Longfei 已提交
57 58 59 60 61 62 63 64
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
65 66 67
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
68
               const VarNameMap& outputs, const AttributeMap& attrs);
69 70 71 72 73

  OperatorBase(const OperatorBase& o) = delete;
  OperatorBase& operator=(const OperatorBase& o) = delete;
  OperatorBase(OperatorBase&& o) = delete;

Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

83
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
84 85 86

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
87
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
88 89

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
90
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
91 92
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
93 94
  virtual bool IsNetOp() const { return false; }

95 96
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
97 98 99
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Q
qiaolongfei 已提交
100 101
  const VarNameMap& Inputs() const { return inputs_; }
  const VarNameMap& Outputs() const { return outputs_; }
Y
Yu Yang 已提交
102
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
103
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
104
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
105
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
106

Y
Yu Yang 已提交
107
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
108
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
109 110
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
111
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
112

Y
Yu Yang 已提交
113
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
114

Q
qiaolongfei 已提交
115
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
116
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
117 118
  const AttributeMap& Attrs() const { return attrs_; }

Q
qiaolongfei 已提交
119
 protected:
Q
Qiao Longfei 已提交
120
  std::string type_;
D
dongzhihong 已提交
121 122 123 124
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
125
  VarNameMap inputs_;
Y
Yu Yang 已提交
126

D
dongzhihong 已提交
127 128
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
129
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
130
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
131 132
};

133 134
class NOP : public OperatorBase {
 public:
135
  using OperatorBase::OperatorBase;
136 137 138 139 140
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
};

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate();

 protected:
  struct VariableBuilder {
    OpProto::Var* var_;

    VariableBuilder& AsDuplicable() {
      var_->set_duplicable(true);
      return *this;
    }

    VariableBuilder& AsIntermediate() {
      var_->set_intermediate(true);
      return *this;
    }

    // TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
    // means that input/output is not needed when calculate gradient. It does
    // not mean no gradient when backward. It should be changed soon.
    VariableBuilder& AsNoGradient() {
      var_->set_no_gradient(true);
      return *this;
    }
  };

  VariableBuilder AddInput(const std::string& name, const std::string& comment);

  VariableBuilder AddOutput(const std::string& name,
                            const std::string& comment);

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
                               const std::string& comment,
                               bool generated = false) {
    auto* attr = proto_->add_attrs();
    attr->set_name(name);
    attr->set_comment(comment);
    attr->set_generated(generated);
    attr->set_type(AttrTypeID<T>());
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) { proto_->set_comment(comment); }

 private:
  void CheckNoDuplicatedInOutAttrs();

  OpProto* proto_;
  OpAttrChecker* op_checker_;
  bool validated_{false};
};

class NOPMaker : public OpProtoAndCheckerMaker {
 public:
  NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {}
};

209
class InferShapeContext {
Y
Yan Chunwei 已提交
210
 public:
211 212
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
213

Y
Yu Yang 已提交
214
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
215
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
216 217
  }

Y
Yu Yang 已提交
218
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
219
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
220 221
  }

222
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
223
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
224 225
  }

226
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
227
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
228 229
  }

230 231
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
232 233
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
234
    res.reserve(names.size());
Y
Yan Chunwei 已提交
235
    std::transform(
236
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
237
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
238 239 240
    return res;
  }

241
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
242 243
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
244
    res.reserve(names.size());
Y
Yan Chunwei 已提交
245
    std::transform(
246
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
247
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
248 249 250
    return res;
  }

251 252
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
253
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
254
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
255
    return &var->Get<T>();
256 257 258 259
  }

  template <typename T>
  T* Output(const std::string& name) const {
260
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
261
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
262
    return var->GetMutable<T>();
263 264 265 266 267 268 269 270
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
271
                   [&](const std::string& sub_name) {
272
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
273 274 275
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
276
                     return &var->Get<T>();
277 278 279 280 281 282 283 284 285 286
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
287
                   [&](const std::string& sub_name) {
288
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
289
                     PADDLE_ENFORCE_NOT_NULL(
F
fengjiayi 已提交
290
                         var, "MultiOutput(%s:%s) should not be nullptr.", name,
Y
Yan Chunwei 已提交
291
                         sub_name);
292
                     return var->GetMutable<T>();
293 294 295 296 297
                   });
    return res;
  }

  const OperatorBase& op_;
298
  const Scope& scope_;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

316
class ExecutionContext : public InferShapeContext {
317
 public:
318
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
319
                   const platform::DeviceContext* device_context)
320
      : InferShapeContext(op, scope), device_context_(device_context) {}
321

Q
qijun 已提交
322 323 324
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
325
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
326

D
dongzhihong 已提交
327
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
328

Q
qijun 已提交
329
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
330
    return device_context_;
Q
qijun 已提交
331
  }
Q
qijun 已提交
332

D
dongzhihong 已提交
333
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
334 335
};

Q
qijun 已提交
336 337
class OpKernel {
 public:
Q
qijun 已提交
338
  /**
339
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
340 341
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
342
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
343 344
   */

345
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
346 347 348 349

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
350 351
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
352 353
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
354

Y
Yu Yang 已提交
355
    OpKernelKey() = default;
L
liaogang 已提交
356
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
357 358 359
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
360 361 362
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
363 364 365 366 367 368 369 370 371 372 373
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
374

Y
Yu Yang 已提交
375 376 377 378
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

379
  void InferShape(const Scope& scope) const override {
380
    InferShape(InferShapeContext(*this, scope));
381 382
  }

Y
Yu Yang 已提交
383
  void Run(const Scope& scope,
Y
Yu Yang 已提交
384
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
385
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
386
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
387 388
  }

Y
Yu Yang 已提交
389 390 391 392
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
393
  }
Y
Yan Chunwei 已提交
394

395 396 397 398 399 400
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
401
 protected:
402
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
403 404 405 406
};

}  // namespace framework
}  // namespace paddle