operator.h 13.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
53
class OperatorBase;
54 55
class InferShapeContext;
class ExecutionContext;
56

Q
Qiao Longfei 已提交
57 58 59 60 61 62 63 64
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
65 66 67
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
68
               const VarNameMap& outputs, const AttributeMap& attrs);
69

Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77 78
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

79
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
80 81 82

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
83
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
84 85

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
86
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
87 88
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
89 90
  virtual bool IsNetOp() const { return false; }

91 92
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
93 94 95
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Q
qiaolongfei 已提交
96 97
  const VarNameMap& Inputs() const { return inputs_; }
  const VarNameMap& Outputs() const { return outputs_; }
Y
Yu Yang 已提交
98
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
99
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
100
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
101
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
102

Y
Yu Yang 已提交
103
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
104
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
105 106
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
107
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
108

Y
Yu Yang 已提交
109
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
110

Q
qiaolongfei 已提交
111
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
112
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
113 114
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
115
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
116 117
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
118

Q
qiaolongfei 已提交
119
 protected:
Q
Qiao Longfei 已提交
120
  std::string type_;
D
dongzhihong 已提交
121
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
122
  // I (Inputs)opear
D
dongzhihong 已提交
123 124
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
125
  VarNameMap inputs_;
Y
Yu Yang 已提交
126

D
dongzhihong 已提交
127 128
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
129
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
130
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
131 132
};

Y
Yu Yang 已提交
133 134
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
135
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
136 137 138 139
#define DEFINE_OP_CLONE_METHOD(CLS)                       \
  std::unique_ptr<OperatorBase> Clone() const final {     \
    return std::unique_ptr<OperatorBase>(new CLS(*this)); \
  }
Y
Yu Yang 已提交
140

Y
Yu Yang 已提交
141 142 143 144
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
145
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS)                                 \
Y
Yu Yang 已提交
146 147 148 149
  CLS(const std::string& type, const VarNameMap& inputs,                       \
      const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
      : PARENT_CLS(type, inputs, outputs, attrs) {}

150 151
class NOP : public OperatorBase {
 public:
152
  using OperatorBase::OperatorBase;
153 154 155
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
156 157 158
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
159 160
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate();

 protected:
  struct VariableBuilder {
    OpProto::Var* var_;

    VariableBuilder& AsDuplicable() {
      var_->set_duplicable(true);
      return *this;
    }

    VariableBuilder& AsIntermediate() {
      var_->set_intermediate(true);
      return *this;
    }

187 188
    VariableBuilder& NotInGradient() {
      var_->set_not_in_gradient(true);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
      return *this;
    }
  };

  VariableBuilder AddInput(const std::string& name, const std::string& comment);

  VariableBuilder AddOutput(const std::string& name,
                            const std::string& comment);

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
                               const std::string& comment,
                               bool generated = false) {
    auto* attr = proto_->add_attrs();
    attr->set_name(name);
    attr->set_comment(comment);
    attr->set_generated(generated);
    attr->set_type(AttrTypeID<T>());
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) { proto_->set_comment(comment); }

 private:
  void CheckNoDuplicatedInOutAttrs();

  OpProto* proto_;
  OpAttrChecker* op_checker_;
  bool validated_{false};
};

class NOPMaker : public OpProtoAndCheckerMaker {
 public:
  NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {}
};

226
class InferShapeContext {
Y
Yan Chunwei 已提交
227
 public:
228 229
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
230

Y
Yu Yang 已提交
231
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
232
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
233 234
  }

Y
Yu Yang 已提交
235
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
236
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
237 238
  }

239
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
240
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
241 242
  }

243
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
244
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
245 246
  }

247 248
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
249 250
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
251
    res.reserve(names.size());
Y
Yan Chunwei 已提交
252
    std::transform(
253
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
254
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
255 256 257
    return res;
  }

258
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
259 260
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
261
    res.reserve(names.size());
Y
Yan Chunwei 已提交
262
    std::transform(
263
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
264
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
265 266 267
    return res;
  }

268 269
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
270
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
271
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
272
    return &var->Get<T>();
273 274 275 276
  }

  template <typename T>
  T* Output(const std::string& name) const {
277
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
278
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
279
    return var->GetMutable<T>();
280 281 282 283 284 285 286 287
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
288
                   [&](const std::string& sub_name) {
289
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
290 291 292
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
293
                     return &var->Get<T>();
294 295 296 297 298 299 300 301 302 303
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
304
                   [&](const std::string& sub_name) {
305
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
306
                     PADDLE_ENFORCE_NOT_NULL(
F
fengjiayi 已提交
307
                         var, "MultiOutput(%s:%s) should not be nullptr.", name,
Y
Yan Chunwei 已提交
308
                         sub_name);
309
                     return var->GetMutable<T>();
310 311 312 313 314
                   });
    return res;
  }

  const OperatorBase& op_;
315
  const Scope& scope_;
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

333
class ExecutionContext : public InferShapeContext {
334
 public:
335
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
336
                   const platform::DeviceContext* device_context)
337
      : InferShapeContext(op, scope), device_context_(device_context) {}
338

Q
qijun 已提交
339 340 341
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
342
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
343

D
dongzhihong 已提交
344
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
345

Q
qijun 已提交
346
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
347
    return device_context_;
Q
qijun 已提交
348
  }
Q
qijun 已提交
349

D
dongzhihong 已提交
350
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
351 352
};

Q
qijun 已提交
353 354
class OpKernel {
 public:
Q
qijun 已提交
355
  /**
356
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
357 358
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
359
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
360 361
   */

362
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
363 364 365 366

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
367 368
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
369 370
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
371

Y
Yu Yang 已提交
372
    OpKernelKey() = default;
L
liaogang 已提交
373
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
374 375 376
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
377 378 379
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
380 381 382 383 384 385 386 387 388 389 390
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
391

Y
Yu Yang 已提交
392 393 394 395
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

396
  void InferShape(const Scope& scope) const override {
397
    InferShape(InferShapeContext(*this, scope));
398 399
  }

Y
Yu Yang 已提交
400
  void Run(const Scope& scope,
Y
Yu Yang 已提交
401
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
402
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
403
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
404 405
  }

Y
Yu Yang 已提交
406 407 408 409
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
410
  }
Y
Yan Chunwei 已提交
411

412 413 414 415 416 417
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
418
 protected:
419
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
420 421 422 423
};

}  // namespace framework
}  // namespace paddle