operator.h 6.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yu Yang 已提交
17 18 19
#include <paddle/framework/attr_checker.h>
#include <paddle/framework/op_desc.pb.h>
#include <paddle/framework/scope.h>
Y
Yu Yang 已提交
20
#include <paddle/framework/tensor.h>
Y
Yu Yang 已提交
21 22 23
#include <paddle/platform/device_context.h>
#include <paddle/platform/place.h>
#include <paddle/utils/Error.h>
Q
Qiao Longfei 已提交
24 25 26 27 28 29 30 31
#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

namespace paddle {
namespace framework {

Q
qijun 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

Q
Qiao Longfei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class OperatorBase;

/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

  std::string DebugString() const;

Q
Qiao Longfei 已提交
68 69 70 71
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
72 73 74 75 76 77
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
  virtual void InferShape(const std::shared_ptr<Scope>& scope) const = 0;

  /// Net will call this function to Run an op.
  virtual void Run(const std::shared_ptr<Scope>& scope,
Y
Yu Yang 已提交
78 79 80 81
                   const platform::DeviceContext& dev_ctx) const = 0;

 protected:
  std::string Type() const { return desc_.type(); }
Q
Qiao Longfei 已提交
82 83 84 85 86 87 88 89

 public:
  OpDesc desc_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
};

Q
qijun 已提交
90 91 92 93 94 95 96
/**
 * KernelContext is the only parameter of Kernel Run function.
 * Run will get input/output variables, state such as momentum and
 * device resource such as CUDA stream, cublas handle, etc. from
 * KernelContext. User should construct it before run the Operator.
 */
class KernelContext {
Y
Yu Yang 已提交
97
 public:
Q
qijun 已提交
98 99 100
  KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope,
                const platform::DeviceContext& device_context)
      : op_(*op), scope_(scope), device_context_(device_context) {}
Y
Yu Yang 已提交
101

Q
qijun 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  const Variable* Input(int index) const {
    return scope_->GetVariable(op_.inputs_[index]);
  }

  Variable* Output(int index) const {
    return scope_->GetVariable(op_.outputs_[index]);
  }

  platform::DeviceContext& device_context() const { return device_context_; }

  template <typename PlaceType, typename DeviceType = EigenDeviceConverter<
                                    PlaceType>::EigenDeviceType>
  DeviceType* get_eigen_device();

  const OperatorBase& op_;
  const std::shared_ptr<Scope>& scope_;
  const platform::DeviceContext& device_context_;
};

class OpKernel {
 public:
Y
Yu Yang 已提交
123 124 125 126 127
  virtual void Compute(const KernelContext& context) const = 0;

  virtual ~OpKernel() {}
};

Y
Yu Yang 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140
template <typename T>
struct VarToTensor {};

template <>
struct VarToTensor<Tensor*> {
  Tensor* operator()(Variable* var) { return var->GetMutable<Tensor>(); }
};

template <>
struct VarToTensor<const Tensor*> {
  const Tensor* operator()(Variable* var) { return &var->Get<Tensor>(); }
};

Q
Qiao Longfei 已提交
141 142
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
143 144
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
145

Y
Yu Yang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    OpKernelKey() = default;
    OpKernelKey(const platform::DeviceContext& dev_ctx) {
      place_ = dev_ctx.GetPlace();
    }

    bool operator==(const OpKernelKey& o) const { return place_ == o.place_; }
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
163 164

  void Run(const std::shared_ptr<Scope>& scope,
Y
Yu Yang 已提交
165 166 167
           const platform::DeviceContext& dev_ctx) const final {
    auto& opKernel = AllOpKernels().at(Type()).at(OpKernelKey(dev_ctx));
    opKernel->Compute(OpKernel::KernelContext(this, scope, dev_ctx));
Q
Qiao Longfei 已提交
168 169
  }

Y
Yu Yang 已提交
170 171 172 173
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
174 175 176 177 178 179 180
  }
  void InferShape(const std::shared_ptr<Scope>& scope) const final {
    std::vector<const Tensor*> ins;
    VarNamesToTensors(scope, inputs_, &ins);
    std::vector<Tensor*> outs;
    VarNamesToTensors(scope, outputs_, &outs);
    InferShape(ins, outs);
Y
Yu Yang 已提交
181
  };
Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

 private:
  template <typename T>
  void VarNamesToTensors(const std::shared_ptr<Scope>& scope,
                         const std::vector<std::string>& var_names,
                         std::vector<T>* container) const {
    container->reserve(var_names.size());
    VarToTensor<T> convert;
    for (auto& name : var_names) {
      auto var = scope->GetVariable(name);
      if (var != nullptr) {
        container->push_back(convert(var));
      } else {
        container->push_back(nullptr);
      }
    }
  }

 protected:
  virtual void InferShape(const std::vector<const Tensor*>& inputs,
                          const std::vector<Tensor*>& outputs) const = 0;
Q
Qiao Longfei 已提交
203 204 205 206
};

}  // namespace framework
}  // namespace paddle