operator.h 10.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

53 54
extern std::unordered_map<std::string, OpProto>& OpProtos();

Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
67 68 69
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
70
               const VarNameMap& outputs, const AttributeMap& attrs);
71

Q
Qiao Longfei 已提交
72 73 74 75 76 77 78 79 80
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

81
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
82 83 84

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
85
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
86 87

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
88
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
89 90
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
91 92
  virtual bool IsNetOp() const { return false; }

93 94
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
95 96 97
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
98
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
99
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
100
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
101
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
102

Y
Yu Yang 已提交
103
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
104
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
105 106
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
107
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
108

Y
Yu Yang 已提交
109
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
Y
Yan Chunwei 已提交
110

111
  std::string Type() const { return type_; }
Y
Yi Wang 已提交
112 113
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
114 115
  virtual OperatorBase* Clone() const = 0;

Q
Qiao Longfei 已提交
116
 public:
Q
Qiao Longfei 已提交
117
  std::string type_;
D
dongzhihong 已提交
118 119 120 121
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
122
  VarNameMap inputs_;
Y
Yu Yang 已提交
123

D
dongzhihong 已提交
124 125
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
126
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
127
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
128 129
};

Y
Yu Yang 已提交
130 131 132 133 134 135 136 137
#define DEFINE_OP_CLONE_METHOD(CLS) \
  OperatorBase* Clone() const final { return new CLS(*this); }

#define DEFINE_OP_CTOR(CLS, PARENT_CLS)                                        \
  CLS(const std::string& type, const VarNameMap& inputs,                       \
      const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
      : PARENT_CLS(type, inputs, outputs, attrs) {}

138
class InferShapeContext {
Y
Yan Chunwei 已提交
139
 public:
140 141
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
142

Y
Yu Yang 已提交
143
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
144
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
145 146
  }

Y
Yu Yang 已提交
147
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
148
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
149 150
  }

151
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
152
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
153 154
  }

155
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
156
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
157 158
  }

159 160
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
161 162
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
163
    res.reserve(names.size());
Y
Yan Chunwei 已提交
164
    std::transform(
165
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
166
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
167 168 169
    return res;
  }

170
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
171 172
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
173
    res.reserve(names.size());
Y
Yan Chunwei 已提交
174
    std::transform(
175
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
176
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
177 178 179
    return res;
  }

180 181
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
182
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
183
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
184
    return &var->Get<T>();
185 186 187 188
  }

  template <typename T>
  T* Output(const std::string& name) const {
189
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
190
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
191
    return var->GetMutable<T>();
192 193 194 195 196 197 198 199
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
200
                   [&](const std::string& sub_name) {
201
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
202 203 204
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
205
                     return &var->Get<T>();
206 207 208 209 210 211 212 213 214 215
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
216
                   [&](const std::string& sub_name) {
217
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
218 219 220
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
221
                     return var->GetMutable<T>();
222 223 224 225 226
                   });
    return res;
  }

  const OperatorBase& op_;
227
  const Scope& scope_;
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

245
class ExecutionContext : public InferShapeContext {
246
 public:
247
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
248
                   const platform::DeviceContext* device_context)
249
      : InferShapeContext(op, scope), device_context_(device_context) {}
250

Q
qijun 已提交
251 252 253
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
254
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
255

D
dongzhihong 已提交
256
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
257

Q
qijun 已提交
258
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
259
    return device_context_;
Q
qijun 已提交
260
  }
Q
qijun 已提交
261

D
dongzhihong 已提交
262
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
263 264
};

Q
qijun 已提交
265 266
class OpKernel {
 public:
Q
qijun 已提交
267
  /**
268
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
269 270
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
271
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
272 273
   */

274
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
275 276 277 278

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
279 280
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
281 282
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
283

Y
Yu Yang 已提交
284
    OpKernelKey() = default;
L
liaogang 已提交
285
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
286 287 288
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
289 290 291
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
292 293 294 295 296 297 298 299 300 301 302
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
303

Y
Yu Yang 已提交
304 305 306 307
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

308
  void InferShape(const Scope& scope) const override {
309
    InferShape(InferShapeContext(*this, scope));
310 311
  }

Y
Yu Yang 已提交
312
  void Run(const Scope& scope,
Y
Yu Yang 已提交
313
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
314
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
315
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
316 317
  }

Y
Yu Yang 已提交
318 319 320 321
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
322
  }
Y
Yan Chunwei 已提交
323

324 325 326 327 328 329
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
330
 protected:
331
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
332 333 334 335
};

}  // namespace framework
}  // namespace paddle