operator.h 6.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>
Q
qijun 已提交
21 22 23 24 25 26 27
#include "paddle/framework/attr_checker.h"
#include "paddle/framework/op_desc.pb.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
28 29 30 31

namespace paddle {
namespace framework {

Q
qijun 已提交
32 33 34 35
template <typename T>
struct EigenDeviceConverter;

template <>
Q
qijun 已提交
36
struct EigenDeviceConverter<platform::CPUPlace> {
Q
qijun 已提交
37 38 39 40 41
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
Q
qijun 已提交
42
struct EigenDeviceConverter<platform::GPUPlace> {
Q
qijun 已提交
43 44 45 46
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

Q
Qiao Longfei 已提交
47
class OperatorBase;
Q
Qiao Longfei 已提交
48
using OperatorPtr = std::shared_ptr<OperatorBase>;
Q
Qiao Longfei 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

  std::string DebugString() const;

Q
Qiao Longfei 已提交
68 69 70 71
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
72 73
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Q
Qiao Longfei 已提交
74
  virtual void InferShape(const ScopePtr& scope) const = 0;
Q
Qiao Longfei 已提交
75 76

  /// Net will call this function to Run an op.
Q
Qiao Longfei 已提交
77
  virtual void Run(const ScopePtr& scope,
Y
Yu Yang 已提交
78 79
                   const platform::DeviceContext& dev_ctx) const = 0;

Q
Qiao Longfei 已提交
80
 public:
Q
Qiao Longfei 已提交
81
  std::string type_;
Q
Qiao Longfei 已提交
82 83 84 85 86
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
};

Q
qijun 已提交
87 88
class OpKernel {
 public:
Q
qijun 已提交
89 90 91 92 93 94 95 96
  /**
   * KernelContext is the only parameter of Kernel Run function.
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
   * KernelContext. User should construct it before run the Operator.
   */
  class KernelContext {
   public:
Q
Qiao Longfei 已提交
97
    KernelContext(const OperatorBase* op, const ScopePtr& scope,
Q
qijun 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111
                  const platform::DeviceContext& device_context)
        : op_(*op), scope_(scope), device_context_(device_context) {}

    const Variable* Input(int index) const {
      return scope_->GetVariable(op_.inputs_[index]);
    }

    Variable* Output(int index) const {
      return scope_->GetVariable(op_.outputs_[index]);
    }

    template <typename PlaceType,
              typename DeviceType =
                  typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
Q
qijun 已提交
112 113 114
    DeviceType* GetEigenDevice() const;

    platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
115 116

    const OperatorBase& op_;
Q
Qiao Longfei 已提交
117
    const ScopePtr& scope_;
Q
qijun 已提交
118 119 120
    const platform::DeviceContext& device_context_;
  };

Y
Yu Yang 已提交
121 122 123 124 125
  virtual void Compute(const KernelContext& context) const = 0;

  virtual ~OpKernel() {}
};

Y
Yu Yang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138
template <typename T>
struct VarToTensor {};

template <>
struct VarToTensor<Tensor*> {
  Tensor* operator()(Variable* var) { return var->GetMutable<Tensor>(); }
};

template <>
struct VarToTensor<const Tensor*> {
  const Tensor* operator()(Variable* var) { return &var->Get<Tensor>(); }
};

Q
Qiao Longfei 已提交
139 140
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
141 142
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
143

Y
Yu Yang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    OpKernelKey() = default;
    OpKernelKey(const platform::DeviceContext& dev_ctx) {
      place_ = dev_ctx.GetPlace();
    }

    bool operator==(const OpKernelKey& o) const { return place_ == o.place_; }
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
161

Q
Qiao Longfei 已提交
162
  void Run(const ScopePtr& scope,
Y
Yu Yang 已提交
163
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
164
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
Y
Yu Yang 已提交
165
    opKernel->Compute(OpKernel::KernelContext(this, scope, dev_ctx));
Q
Qiao Longfei 已提交
166 167
  }

Y
Yu Yang 已提交
168 169 170 171
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
172 173 174 175 176 177 178
  }
  void InferShape(const std::shared_ptr<Scope>& scope) const final {
    std::vector<const Tensor*> ins;
    VarNamesToTensors(scope, inputs_, &ins);
    std::vector<Tensor*> outs;
    VarNamesToTensors(scope, outputs_, &outs);
    InferShape(ins, outs);
Y
Yu Yang 已提交
179
  };
Y
Yu Yang 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

 private:
  template <typename T>
  void VarNamesToTensors(const std::shared_ptr<Scope>& scope,
                         const std::vector<std::string>& var_names,
                         std::vector<T>* container) const {
    container->reserve(var_names.size());
    VarToTensor<T> convert;
    for (auto& name : var_names) {
      auto var = scope->GetVariable(name);
      if (var != nullptr) {
        container->push_back(convert(var));
      } else {
        container->push_back(nullptr);
      }
    }
  }

 protected:
  virtual void InferShape(const std::vector<const Tensor*>& inputs,
                          const std::vector<Tensor*>& outputs) const = 0;
Q
Qiao Longfei 已提交
201 202 203 204
};

}  // namespace framework
}  // namespace paddle