onnx_op_mapper.py 62.3 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
23
from x2paddle.op_mapper.onnx_custom_layer import *
C
channingss 已提交
24
from x2paddle.core.util import string
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx
C
channingss 已提交
27
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
28
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
29 30
import logging as _logging
from collections import OrderedDict as _dict
C
channingss 已提交
31
import math
C
channingss 已提交
32 33
import os
import shutil
R
root 已提交
34
from functools import reduce
R
root 已提交
35

C
update  
channingss 已提交
36 37 38 39
_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
C
channings 已提交
40
    if 'Constant' in node.layer_type:
C
channingss 已提交
41
        return node.value
C
update  
channingss 已提交
42 43 44 45 46
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
47 48 49 50 51 52 53 54
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


R
root 已提交
55
class ONNXOpMapper(OpMapper):
56 57 58 59 60
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
61 62
        'Pow': 'elementwise_pow',
    }
63

C
channingss 已提交
64
    def __init__(self, decoder, save_dir):
C
update  
channingss 已提交
65 66 67 68 69 70
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
71
        self.used_custom_layers = dict()
C
channingss 已提交
72 73 74
        self.is_inference = False
        self.tmp_data_dir = os.path.join(save_dir, 'tmp_data')
        self.get_output_shapes()
R
root 已提交
75

C
update  
channingss 已提交
76 77
        if not self.op_checker():
            raise Exception("Model are not supported yet.")
R
root 已提交
78

C
update  
channingss 已提交
79
        #mapping op
C
updatea  
channingss 已提交
80 81 82 83 84
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
85 86 87 88 89 90 91
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
92
                self.directly_map(node)
C
channingss 已提交
93 94
            elif op in custom_layers:
                self.deal_custom_layer(node)
95 96
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
C
update  
channingss 已提交
97

C
channingss 已提交
98 99
        self.remove_tmp_data()

C
update  
channingss 已提交
100 101 102 103 104
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
105 106 107 108
            if not hasattr(self, op) and \
                op not in default_op_mapping and \
                op not in custom_layers and \
                op not in self.elementwise_ops:
C
update  
channingss 已提交
109 110 111 112 113 114 115 116 117 118
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
119
    def get_results_of_inference(self, model, value_infos, data_nodes):
120 121
        if not os.path.exists(self.tmp_data_dir):
            os.makedirs(self.tmp_data_dir)
R
root 已提交
122

C
channingss 已提交
123 124
        for data_node in data_nodes:
            value_info = value_infos[data_node]
C
channings 已提交
125 126
            shape = value_info['shape']
            for i, dim_shape in enumerate(shape):
R
root 已提交
127 128 129
                if dim_shape == 0 and i == 0:
                    shape[i] = 1
                if dim_shape == 0 and i != 0:
C
channings 已提交
130
                    assert 'shape of input is not assigned'
R
root 已提交
131
            ipt = np.random.random(shape).astype(value_info['dtype'])
132
            np.save(os.path.join(self.tmp_data_dir, data_node), ipt)
R
root 已提交
133

C
channingss 已提交
134 135 136 137 138 139 140 141 142
        model = onnx.shape_inference.infer_shapes(model)
        outputs = []
        for value_info in model.graph.value_info:
            outputs.append(value_info)

        model.graph.ClearField('output')
        model.graph.output.MergeFrom(outputs)
        onnx.save(model, os.path.join(self.tmp_data_dir,
                                      'onnx_model_infer.onnx'))
C
channingss 已提交
143

R
root 已提交
144 145 146 147 148 149
        is_success = os.system('onnx_infer --save_dir=' + self.tmp_data_dir)
        if is_success != 0:
            raise Exception("onnxruntime inference onnx model failed, Please \
                             confirm the correctness of onnx model by onnxruntime, \
                             if onnx model is valid, you can submit issue in github."
                            )
C
channingss 已提交
150 151 152 153 154 155
        return

    def get_dynamic_shape(self, layer):
        """
        get dynamic shape from infer_result
        """
156 157 158 159
        path = os.path.join(self.tmp_data_dir, layer + '.npy')
        if not os.path.exists(path):
            return [None, None, None]
        output = np.load(path)
C
channingss 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        return output.tolist(), output.dtype, output.shape

    def get_output_shapes(self):
        """
        build topo_sort of ONNX model
        """
        nodes = self.decoder.model.graph.node
        node_map = self.decoder.onnx_graph.node_map
        value_infos = self.decoder.onnx_graph.value_infos
        onnx_model = self.decoder.model
        for layer in nodes:
            node = node_map[layer.name]
            for opt in layer.output:
                if opt in value_infos:
                    value_info = value_infos[opt]
R
root 已提交
175 176
                    if len(value_info['shape']) == 0 or value_info[
                            'dtype'] is None or 0 in value_info['shape']:
C
channingss 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
                        if self.is_inference == False:
                            self.get_results_of_inference(
                                onnx_model, value_infos,
                                self.decoder.onnx_graph.place_holder_nodes)
                            self.is_inference = True
                        _, dtype, shape = self.get_dynamic_shape(opt)
                        node.out_shapes.append(shape)
                        node.dtype = dtype
                    else:
                        node.dtype = value_info['dtype']
                        node.out_shapes.append(value_info['shape'])
                else:
                    if self.is_inference == False:
                        self.get_results_of_inference(
                            onnx_model, value_infos,
                            self.decoder.onnx_graph.place_holder_nodes)
                        self.is_inference = True
                    _, dtype, shape = self.get_dynamic_shape(opt)
                    node.dtype = dtype
                    node.out_shapes.append(shape)

    def remove_tmp_data(self):
        """
        remove temporarily generated file
        """
        if os.path.exists(self.tmp_data_dir):
            import shutil
            shutil.rmtree(self.tmp_data_dir)

C
channingss 已提交
206
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
238
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
239
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
240 241 242 243
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
244 245 246
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
247 248
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
        if fluid_op not in ['shape']:
C
update  
channingss 已提交
249 250
            attr['name'] = string(node.layer_name)
        node.fluid_code.add_layer(fluid_op,
C
channingss 已提交
251
                                  inputs=val_inps[0],
C
update  
channingss 已提交
252 253 254
                                  output=val_outs[0],
                                  param_attr=attr)

C
channingss 已提交
255 256 257
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
258
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
259 260 261 262
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        node.fluid_code.add_layer(func.__code__.co_name,
C
channingss 已提交
263
                                  inputs=node.inputs,
C
channingss 已提交
264 265 266 267 268
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
269
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
270 271 272
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
273

274 275 276
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
277

278 279 280 281
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
R
root 已提交
282 283

        if len(val_x_shape) < len(val_y_shape):
284 285 286 287
            val_x, val_y = val_y, val_x

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
288
        slice_idx = 0
289 290 291 292 293 294
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
318

C
update  
channingss 已提交
319
    def place_holder(self, node):
C
channingss 已提交
320
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
321

C
channings 已提交
322 323
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
324 325 326
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
327
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
328 329
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
330
            "shape": shape,
C
update  
channingss 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
344
        shape = node.out_shapes[0]
C
channingss 已提交
345 346
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
373
    def _interpolate(self, node):
C
channingss 已提交
374 375
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
376
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
R
root 已提交
377

378 379 380 381
        out_shape = val_y.out_shapes[0]
        if out_shape is not None:
            assert len(out_shape) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape = out_shape[2:]
R
root 已提交
382

C
channingss 已提交
383
        scales = _const_weight_or_none(val_scales)
R
root 已提交
384

385 386 387
        if isinstance(val_scales, ONNXGraphNode):
            scales, _, _ = self.get_dynamic_shape(val_scales.layer_name)

R
root 已提交
388
        attr = {'name': string(node.layer_name)}
389
        use_scales = True
C
channingss 已提交
390
        if scales is not None:
391 392 393
            try:
                assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
                assert scales[0] == 1 and scales[
R
root 已提交
394
                    1] == 1, 'only scale on (NC)HW supported'
395
                assert scales[2] == scales[
R
root 已提交
396
                    3], 'only aspect-ratio-invariant scale supported'
397
            except:
R
root 已提交
398
                use_scales = False
C
channingss 已提交
399 400
        scale = scales[2] if scales else None
        if scale is None:
401
            assert out_shape, 'neither scales nor output shape is available'
C
channingss 已提交
402
        else:
403
            if out_shape is None:
C
channingss 已提交
404 405 406 407
                in_shape = val_x.out_shapes[0]
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
408
                out_shape = [in_shape[2] * scale, in_shape[3] * scale]
409

C
channingss 已提交
410
        mode = node.get_attr('mode', 'nearest')
R
root 已提交
411

C
channingss 已提交
412
        fluid_op = 'resize_{}'.format(mode)
413
        if 'linear' in mode:
R
root 已提交
414 415 416
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
417
            fluid_op = 'resize_bilinear'
R
root 已提交
418

419 420
        if use_scales and scale is not None:
            attr['scale'] = scale
R
root 已提交
421
        else:
422
            attr['out_shape'] = out_shape
423

C
channingss 已提交
424 425 426 427
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
428

C
channings 已提交
429 430 431
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
432 433 434

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
435 436 437
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
438 439 440 441 442
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
C
channings 已提交
443
        node.fluid_code.add_layer('roi_align',
R
root 已提交
444 445 446 447
                                  inputs={
                                      'input': val_x,
                                      'rois': val_rois
                                  },
C
channings 已提交
448 449
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
450

C
channings 已提交
451 452 453
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
454

C
channings 已提交
455 456 457
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
458 459 460 461
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
C
channings 已提交
462
        node.fluid_code.add_layer('roi_pool',
R
root 已提交
463 464 465 466
                                  inputs={
                                      'input': val_x,
                                      'rois': val_rois
                                  },
C
channings 已提交
467 468
                                  output=node,
                                  param_attr=attr)
R
root 已提交
469

C
update  
channingss 已提交
470
    def Pad(self, node, op_independent=True):
C
channingss 已提交
471
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
472 473 474
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
475 476
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
498 499 500 501
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
        else:
            attr['name'] = string(node.layer_name + '_paded')
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
            return node.layer_name + '_paded'

    def Unsqueeze(self, node):
C
channingss 已提交
518
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
519
        axes = node.get_attr('axes')
R
root 已提交
520
        if len(val_x.out_shapes[0]) == 0:
521
            node.fluid_code.add_layer('assign',
R
root 已提交
522 523 524
                                      inputs=val_x,
                                      output=node,
                                      param_attr=None)
525 526 527 528 529 530 531
        else:
            attr = {'axes': axes, 'name': string(node.layer_name)}
            node.fluid_code.add_layer('unsqueeze',
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)

C
channingss 已提交
532
    def Shrink(self, node):
C
channingss 已提交
533
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
534 535 536 537 538 539 540 541 542
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
        node.fluid_code.add_layer('hard_shrink',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
543 544 545 546 547 548 549 550
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
551

C
update  
channingss 已提交
552
        shape = node.get_attr('shape', None)
R
root 已提交
553

C
update  
channingss 已提交
554
        if shape is None:
C
channingss 已提交
555
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
556 557 558 559 560 561 562 563
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

564
        if len(value) == 1:
C
channingss 已提交
565
            value = value.tolist()
C
update  
channingss 已提交
566 567 568 569 570 571 572 573 574
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588
        else:
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'attr': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
589 590

    def Resize(self, node):
591 592 593 594 595 596
        self._interpolate(node)

    def Upsample(self, node):
        self._interpolate(node)

    def Expand(self, node):
C
channingss 已提交
597
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
598
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
599 600

        if len(val_shape.outputs) == 1:
601 602
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
603
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
604
        out_shape = node.out_shapes[0]
605
        val_x_dtype = val_x.dtype
R
root 已提交
606 607 608

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
609 610 611 612
        node.fluid_code.add_layer('ones',
                                  inputs=None,
                                  output=name_ones,
                                  param_attr=attr_ones)
R
root 已提交
613 614
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
615 616 617
        node.fluid_code.add_layer('elementwise_mul',
                                  inputs=inputs,
                                  output=node.layer_name,
R
root 已提交
618
                                  param_attr=attr)
C
update  
channingss 已提交
619

C
channingss 已提交
620 621 622 623
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
624
        axis = node.get_attr('axis', 0)
C
channingss 已提交
625
        assert len(
C
Channingss 已提交
626
            indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
627
        if axis == 0 and len(indices_shape) <= 1:
C
channingss 已提交
628
            node.fluid_code.add_layer('gather',
C
channingss 已提交
629 630 631 632
                                      inputs={
                                          'input': val_x,
                                          'index': indices
                                      },
C
channingss 已提交
633 634
                                      output=node,
                                      param_attr=None)
C
channingss 已提交
635 636
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
637 638 639 640 641 642 643 644
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
C
channingss 已提交
645 646 647 648
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
C
channingss 已提交
649 650 651 652 653 654
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
R
root 已提交
655
        elif len(indices_shape) > 1:
C
Channingss 已提交
656
            from functools import reduce
R
root 已提交
657
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
C
Channingss 已提交
658 659 660
            node.fluid_code.add_layer('reshape',
                                      inputs=indices,
                                      output=indices,
R
root 已提交
661 662 663 664
                                      param_attr={'shape': [
                                          reshape_shape,
                                      ]})

C
Channingss 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            node.fluid_code.add_layer('reshape',
                                      inputs=node,
                                      output=node,
R
root 已提交
693
                                      param_attr={'shape': reshaped_shape})
C
channingss 已提交
694

C
channingss 已提交
695
    def Slice(self, node):
C
channingss 已提交
696
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
697
        starts, ends, axes, steps = None, None, None, None
C
channingss 已提交
698 699 700
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
701
            if len(node.inputs) > 3:
C
channings 已提交
702 703 704
                axes = self.graph.get_input_node(node, idx=3, copy=True)
                self.omit_nodes.append(axes.layer_name)
                axes = _const_weight_or_none(axes)
R
root 已提交
705
            if len(node.inputs) > 4:
C
channings 已提交
706 707 708
                steps = self.graph.get_input_node(node, idx=4, copy=True)
                self.omit_nodes.append(steps.layer_name)
                steps = _const_weight_or_none(steps)
R
root 已提交
709

C
channingss 已提交
710 711
            self.omit_nodes.append(starts.layer_name)
            self.omit_nodes.append(ends.layer_name)
C
channings 已提交
712 713
            starts = _const_weight_or_none(starts)
            ends = _const_weight_or_none(ends)
C
channingss 已提交
714 715 716 717
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
C
channingss 已提交
718

C
channingss 已提交
719 720 721 722 723 724
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        shape = val_x.out_shapes[0]

        if shape is not None:
            for idx, value in enumerate(starts):
C
channingss 已提交
725 726
                if value > shape[axes[idx]]:
                    starts[idx] = shape[axes[idx]]
C
channingss 已提交
727
            for idx, value in enumerate(ends):
C
channingss 已提交
728 729
                if value > shape[axes[idx]]:
                    ends[idx] = shape[axes[idx]]
C
channingss 已提交
730 731 732 733 734 735
        attr = {"axes": axes, "starts": starts, "ends": ends}
        node.fluid_code.add_layer('slice',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
736
    def ConstantOfShape(self, node):
C
channingss 已提交
737
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
738
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
739 740 741
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
742
            shape = node.out_shapes[0]
C
update  
channingss 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Split(self, node):
C
channingss 已提交
763 764
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
765 766

        fluid_op = 'split'
C
channingss 已提交
767
        split = node.get_attr('split')
C
update  
channingss 已提交
768
        axis = node.get_attr('axis', 0)
C
channingss 已提交
769 770 771 772 773
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
774

C
update  
channingss 已提交
775
        node.fluid_code.add_layer('split',
C
channingss 已提交
776 777
                                  inputs=val_x,
                                  output=val_y,
C
update  
channingss 已提交
778 779 780
                                  param_attr=attr)

    def Reshape(self, node):
C
channingss 已提交
781 782
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
783 784
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
C
channingss 已提交
785

C
update  
channingss 已提交
786 787
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)
R
root 已提交
788

789
        attr = {'name': string(node.layer_name)}
C
update  
channingss 已提交
790 791
        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
C
channingss 已提交
792
            shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
793
            if val_shape.dtype == 'int64':
R
root 已提交
794
                val_shape_cast = val_shape.layer_name + '_cast'
795
                node.fluid_code.add_layer('cast',
R
root 已提交
796 797 798 799
                                          inputs=val_shape,
                                          output=val_shape_cast,
                                          param_attr={'dtype': string('int32')})

800 801 802
                attr['actual_shape'] = val_shape_cast
            else:
                attr['actual_shape'] = val_shape
C
channings 已提交
803

C
update  
channingss 已提交
804
        if shape is None:
C
channingss 已提交
805
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
806 807

        if shape is None:
C
channingss 已提交
808
            shape = [1, -1]
C
update  
channingss 已提交
809 810 811
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
812 813
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
R
root 已提交
814

815
        attr['shape'] = shape
C
update  
channingss 已提交
816 817 818 819 820 821
        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
C
channingss 已提交
822
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)

    def AveragePool(self, node):
C
channingss 已提交
839
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
840 841

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
842 843 844 845 846 847 848 849
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
850

C
channingss 已提交
851 852
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
853
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
854
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
855 856 857 858 859 860
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
879
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
880 881 882 883 884 885 886
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
        node.fluid_code.add_layer('concat',
C
channingss 已提交
887
                                  inputs=inputs,
C
update  
channingss 已提交
888 889 890 891
                                  output=node,
                                  param_attr=attr)

    def Flatten(self, node):
C
channingss 已提交
892
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
893 894 895 896 897 898 899 900
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Gemm(self, node):
C
channingss 已提交
901 902 903
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
921

C
update  
channingss 已提交
922 923 924 925 926 927 928 929 930
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
            else:
C
channingss 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
944 945

    def Sum(self, node):
946
        val_inps = node.layer.input
947
        inputs = {
C
channingss 已提交
948 949
            "x": self.graph.get_input_node(node, idx=0, copy=True),
            "y": self.graph.get_input_node(node, idx=1, copy=True),
950 951
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
952

C
channingss 已提交
953 954
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
955 956
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
957
                "y": y,
958 959 960 961
            }
            node.fluid_code.add_layer("elementwise_add",
                                      inputs=inputs,
                                      output=node)
C
update  
channingss 已提交
962 963

    def MatMul(self, node):
C
channingss 已提交
964 965
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
966 967 968 969 970 971 972 973
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def BatchNormalization(self, node):
C
channingss 已提交
974 975 976 977 978
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
979 980 981 982 983 984 985 986 987

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
988 989
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
990 991 992 993
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
994
            "is_test": True,
C
update  
channingss 已提交
995 996 997 998
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
999
            "use_global_stats": spatial,
C
update  
channingss 已提交
1000 1001 1002 1003 1004 1005 1006 1007
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
C
channingss 已提交
1008
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1009 1010 1011 1012 1013 1014 1015 1016
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Relu(self, node):
C
channingss 已提交
1017
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1018 1019 1020 1021 1022 1023 1024
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def PRelu(self, node):
C
channingss 已提交
1025 1026
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1027

C
channingss 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
C
update  
channingss 已提交
1038 1039 1040 1041 1042 1043
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
C
channingss 已提交
1044 1045 1046
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
C
update  
channingss 已提交
1047 1048 1049 1050
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1051

C
channings 已提交
1052 1053 1054 1055
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer("equal",
R
root 已提交
1056 1057 1058 1059
                                  inputs={
                                      'x': val_x,
                                      'y': val_y
                                  },
C
channings 已提交
1060 1061
                                  output=node,
                                  param_attr=None)
R
root 已提交
1062

C
channings 已提交
1063 1064 1065 1066
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1067

C
channings 已提交
1068 1069 1070 1071 1072
        not_condition = condition.layer_name + '_not'
        node.fluid_code.add_layer("logical_not",
                                  inputs=condition,
                                  output=not_condition,
                                  param_attr=None)
R
root 已提交
1073
        cast_not_condition = not_condition + '_cast'
C
channings 已提交
1074 1075 1076
        node.fluid_code.add_layer("cast",
                                  inputs=not_condition,
                                  output=cast_not_condition,
R
root 已提交
1077
                                  param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1078 1079 1080 1081
        cast_condition = condition.layer_name + '_cast'
        node.fluid_code.add_layer("cast",
                                  inputs=condition,
                                  output=cast_condition,
R
root 已提交
1082 1083
                                  param_attr={'dtype': string(val_x.dtype)})
        mul_val_x = val_x.layer_name + '_mul'
C
channings 已提交
1084
        node.fluid_code.add_layer("elementwise_mul",
R
root 已提交
1085 1086 1087 1088
                                  inputs={
                                      'x': val_x,
                                      'y': cast_condition
                                  },
C
channings 已提交
1089 1090
                                  output=mul_val_x,
                                  param_attr=None)
R
root 已提交
1091

C
channings 已提交
1092 1093
        mul_val_y = val_y.layer_name + '_mul'
        node.fluid_code.add_layer("elementwise_mul",
R
root 已提交
1094 1095 1096 1097
                                  inputs={
                                      'x': val_y,
                                      'y': cast_not_condition
                                  },
C
channings 已提交
1098 1099
                                  output=mul_val_y,
                                  param_attr=None)
R
root 已提交
1100

C
channings 已提交
1101
        node.fluid_code.add_layer("elementwise_add",
R
root 已提交
1102 1103 1104 1105
                                  inputs={
                                      'x': mul_val_x,
                                      'y': mul_val_y
                                  },
C
channings 已提交
1106 1107
                                  output=node,
                                  param_attr=None)
R
root 已提交
1108 1109 1110 1111 1112

    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        where_name = node.layer_name + '_where'
        node.fluid_code.add_layer("where",
R
root 已提交
1113
                                  inputs=val_x.layer_name + '!=0',
R
root 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
                                  output=where_name)
        dims = len(val_x.out_shapes[0])
        elements_count_val_x = reduce(lambda x, y: x * y, val_x.out_shapes[0])
        flatten_names = []
        for dim in range(dims):
            slice_name = node.layer_name + '_slice' + str(dim)
            flatten_name = node.layer_name + '_flatten' + str(dim)
            flatten_names.append(flatten_name)
            attr = {
                'axes': list(range(dims)),
                'starts': [0, dim],
                'ends': [elements_count_val_x, dim + 1]
            }
            node.fluid_code.add_layer("slice",
                                      inputs=where_name,
                                      output=slice_name,
                                      param_attr=attr)
            node.fluid_code.add_layer("flatten",
                                      inputs=slice_name,
                                      output=flatten_name,
                                      param_attr={'axis': 0})
        node.fluid_code.add_layer("concat",
                                  inputs=flatten_names,
                                  output=node,
                                  param_attr={'axis': 0})

C
update  
channingss 已提交
1140
    def Identity(self, node):
C
channingss 已提交
1141
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1142
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1143

C
channings 已提交
1144 1145 1146 1147 1148
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
        assert repeats is not None, 'for OP:Tile, only const repeats supported'
R
root 已提交
1149

C
channings 已提交
1150 1151
        if isinstance(repeats, int):
            repeats = [repeats]
R
root 已提交
1152

C
channings 已提交
1153
        attr = {
R
root 已提交
1154
            'expand_times': repeats,
C
channings 已提交
1155 1156
            "name": string(node.layer_name),
        }
R
root 已提交
1157 1158
        node.fluid_code.add_layer("expand",
                                  inputs=val_x,
C
channings 已提交
1159 1160
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1161

C
update  
channingss 已提交
1162
    def MaxPool(self, node):
C
channingss 已提交
1163
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1164

C
channingss 已提交
1165
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1177

C
channingss 已提交
1178 1179
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1180
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1181
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
1182 1183 1184 1185 1186 1187
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channings 已提交
1202
    def _global_pool(self, node):
C
channingss 已提交
1203
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1204
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
1205 1206
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1207 1208 1209 1210 1211 1212 1213
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
R
root 已提交
1214

C
channings 已提交
1215 1216 1217 1218 1219 1220
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1221
        attr = {
C
channings 已提交
1222
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1223 1224 1225 1226 1227 1228 1229
            "global_pooling": True,
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1230

C
channings 已提交
1231 1232
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1233

C
channings 已提交
1234 1235
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1236

C
update  
channingss 已提交
1237
    def Conv(self, node):
C
channingss 已提交
1238 1239
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1240 1241 1242 1243 1244 1245
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1246
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1247 1248 1249
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1250
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1251 1252
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1253
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1254 1255 1256 1257 1258 1259 1260
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1261
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1262 1263
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1264
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
1289 1290

    def ConvTranspose(self, node):
C
channingss 已提交
1291 1292
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1293
        val_b = None
R
root 已提交
1294
        if len(node.layer.input) > 2:
C
channingss 已提交
1295 1296
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1297 1298 1299 1300 1301 1302
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1303
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1304 1305 1306
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1307
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1308 1309
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1310 1311 1312 1313 1314
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1315 1316 1317 1318

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1319

C
channingss 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1335
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1336 1337 1338 1339 1340 1341
            'name': string(node.layer_name),
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channings 已提交
1342 1343 1344 1345 1346

    def GRU(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_r = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1347

C
channings 已提交
1348 1349 1350 1351 1352
        val_b = None
        val_len = None
        val_xh = None
        miss_arg_num = 0
        num_ipt = len(node.layer.input)
R
root 已提交
1353
        if num_ipt > 3 and node.layer.input[3] != '':
C
channings 已提交
1354 1355 1356
            val_b = self.graph.get_input_node(node, idx=3, copy=True)
        else:
            miss_arg_num += 1
R
root 已提交
1357 1358 1359 1360
        if num_ipt > 4 and node.layer.input[4] != '':
            val_len = self.graph.get_input_node(node,
                                                idx=4 - miss_arg_num,
                                                copy=True)
C
channings 已提交
1361 1362
        else:
            miss_arg_num += 1
R
root 已提交
1363 1364 1365 1366 1367
        if num_ipt > 5 and node.layer.input[5] != '':
            val_xh = self.graph.get_input_node(node,
                                               idx=5 - miss_arg_num,
                                               copy=True)

C
channings 已提交
1368
        data, dtype, shape = self.get_dynamic_shape(val_x.layer_name)
R
root 已提交
1369

C
channings 已提交
1370
        x_shape = val_x.out_shapes[0]
R
root 已提交
1371

C
channings 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        assert x_shape[1] == 1, 'only X with batch_size = 1 supported'
        assert node.get_attr('clip', None) is None, 'clipping not supported'

        hidden_size = node.get_attr('hidden_size', None)
        if hidden_size is None:
            r_shape = val_r.out_shapes[0]
            if r_shape:
                hidden_size = r_shape[-1]
        if hidden_size is None:
            w_shape = var_w.out_shapes[0]
            if w_shape:
                hidden_size = w_shape[-2] // 3
        if hidden_size is None and val_b:
            b_shape = val_b.out_shapes[0]
            if b_shape:
                hidden_size = b_shape[-1] // 6
        if hidden_size is None and val_xh:
            xh_shape = val_xh.out_shapes[0]
            if xh_shape:
                hidden_size = xh_shape[-1]
R
root 已提交
1392 1393

        direction = node.get_attr('direction', 'forward')
C
channings 已提交
1394
        assert direction != 'bidirectional', 'direction = bidirectional not supported'
R
root 已提交
1395

C
channings 已提交
1396 1397
        activations = node.get_attr('activations', ['Sigmoid', 'Tanh'])
        assert len(activations) == 2, 'bidirectional operation not supported'
R
root 已提交
1398 1399 1400 1401

        assert node.get_attr('linear_before_reset',
                             0) == 0, 'only linear_before_reset = 0 supported'

C
channings 已提交
1402 1403 1404
        activations = [s.lower() for s in activations]
        gate_activation, candidate_activation = activations
        is_reverse = direction == 'reverse'
R
root 已提交
1405

C
channings 已提交
1406 1407 1408 1409
        var_x0 = node.layer_name + '_x0'
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_x,
                                  output=var_x0,
R
root 已提交
1410 1411 1412 1413 1414
                                  param_attr={
                                      'axes': [1],
                                      'name': string(var_x0)
                                  })

C
channings 已提交
1415 1416 1417 1418
        var_w0 = node.layer_name + '_w0'
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_w,
                                  output=var_w0,
R
root 已提交
1419 1420 1421 1422 1423
                                  param_attr={
                                      'axes': [0],
                                      'name': string(var_w0)
                                  })

C
channings 已提交
1424 1425 1426
        var_fc = node.layer_name + '_fc'
        var_mm = (node.layer_name + '_mm') if val_b else var_fc
        node.fluid_code.add_layer('matmul',
R
root 已提交
1427 1428 1429 1430
                                  inputs={
                                      'x': var_x0,
                                      'y': var_w0
                                  },
C
channings 已提交
1431
                                  output=var_mm,
R
root 已提交
1432 1433 1434 1435 1436 1437
                                  param_attr={
                                      'transpose_x': 0,
                                      'transpose_y': 1,
                                      'name': string(var_mm)
                                  })

C
channings 已提交
1438 1439 1440 1441
        var_r0 = node.layer_name + '_r0'
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_r,
                                  output=var_r0,
R
root 已提交
1442 1443 1444 1445 1446 1447 1448
                                  param_attr={
                                      'axes': [0],
                                      'name': string(var_r0)
                                  })

        var_r0t = node.layer_name + '_r0t'

C
channings 已提交
1449 1450 1451
        node.fluid_code.add_layer('transpose',
                                  inputs=var_r0,
                                  output=var_r0t,
R
root 已提交
1452 1453 1454 1455
                                  param_attr={
                                      'perm': [1, 0],
                                      'name': string(var_r0t)
                                  })
C
channings 已提交
1456 1457 1458 1459
        if val_b:
            var_bi = node.layer_name + '_bi'
            var_bh = node.layer_name + '_bh'
            node.fluid_code.add_layer('split',
R
root 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
                                      inputs=val_b,
                                      output=var_bi + ',' + var_bh,
                                      param_attr={
                                          'axis':
                                          1,
                                          'split':
                                          [hidden_size * 3, hidden_size * 3],
                                          'name':
                                          string(node.layer_name + '.b/split')
                                      })
C
channings 已提交
1470 1471
            var_bi0 = node.layer_name + '_bi0'
            node.fluid_code.add_layer('squeeze',
R
root 已提交
1472 1473 1474 1475 1476 1477 1478
                                      inputs=var_bi,
                                      output=var_bi0,
                                      param_attr={
                                          'axes': [0],
                                          'name': string(var_bi0)
                                      })

C
channings 已提交
1479
            node.fluid_code.add_layer('elmentwise_add',
R
root 已提交
1480 1481 1482 1483 1484 1485 1486 1487
                                      inputs=[var_mm, var_bi0],
                                      output=var_fc,
                                      param_attr={
                                          'axes':
                                          1,
                                          'name':
                                          string(node.layer_name + '.i/bias')
                                      })
C
channings 已提交
1488 1489 1490 1491

        if val_xh:
            var_xh0 = node.layer_name + '_xh0'
            node.fluid_code.add_layer('squeeze',
R
root 已提交
1492 1493 1494 1495 1496 1497
                                      inputs=val_xh,
                                      output=var_xh0,
                                      param_attr={
                                          'axes': [1],
                                          'name': string(var_xh0)
                                      })
C
channings 已提交
1498
        var_y00 = node.layer_name + '_y00'
R
root 已提交
1499 1500 1501

        attr = {
            'origin_mode': True,
C
channings 已提交
1502
            'h_0': var_xh0 if val_xh else None,
R
root 已提交
1503 1504 1505 1506 1507
            'is_reverse': is_reverse,
            'gate_activation': string(gate_activation),
            'candidate_activation': string(candidate_activation),
            'param_attr': string(var_r0t),
            'bias_attr': string(var_bh) if val_b else False,
C
channings 已提交
1508 1509
        }
        node.fluid_code.add_layer('dynamic_gru',
R
root 已提交
1510
                                  inputs=var_fc + ',' + str(hidden_size),
C
channings 已提交
1511 1512
                                  output=var_y00,
                                  param_attr=attr)
R
root 已提交
1513

C
channings 已提交
1514
        num_opt = len(node.layer.output)
R
root 已提交
1515 1516

        if num_opt > 0 and node.layer.output[0] != '':
C
channings 已提交
1517
            node.fluid_code.add_layer('unsqueeze',
R
root 已提交
1518 1519 1520 1521 1522 1523 1524
                                      inputs=var_y00,
                                      output=node.layer.output[0],
                                      param_attr={
                                          'axes': [1, 1],
                                          'name': string(node.layer.output[0])
                                      })
        if num_opt > 1 and node.layer.output[1] != '':
C
channings 已提交
1525
            node.fluid_code.add_layer('unsqueeze',
R
root 已提交
1526 1527 1528 1529 1530 1531
                                      inputs=var_y00,
                                      output=node.layer.output[1],
                                      param_attr={
                                          'axes': [1, 1],
                                          'name': string(node.layer.output[1])
                                      })