onnx_op_mapper.py 61.9 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
23
from x2paddle.op_mapper.onnx_custom_layer import *
C
channingss 已提交
24
from x2paddle.core.util import string
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx
C
channingss 已提交
27
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
28
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
29 30
import logging as _logging
from collections import OrderedDict as _dict
C
channingss 已提交
31
import math
C
channingss 已提交
32 33
import os
import shutil
R
root 已提交
34
from functools import reduce
R
root 已提交
35

C
update  
channingss 已提交
36 37 38 39
_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
C
channings 已提交
40
    if 'Constant' in node.layer_type:
C
channingss 已提交
41
        return node.value
C
update  
channingss 已提交
42 43 44 45 46
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
47 48 49 50 51 52 53 54
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


R
root 已提交
55
class ONNXOpMapper(OpMapper):
56 57 58 59 60
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
61 62
        'Pow': 'elementwise_pow',
    }
63

C
channingss 已提交
64
    def __init__(self, decoder, save_dir):
C
update  
channingss 已提交
65 66 67 68 69 70
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
71
        self.used_custom_layers = dict()
C
channingss 已提交
72 73 74
        self.is_inference = False
        self.tmp_data_dir = os.path.join(save_dir, 'tmp_data')
        self.get_output_shapes()
R
root 已提交
75

C
update  
channingss 已提交
76 77
        if not self.op_checker():
            raise Exception("Model are not supported yet.")
R
root 已提交
78

C
update  
channingss 已提交
79
        #mapping op
C
updatea  
channingss 已提交
80 81 82 83 84
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
85 86 87 88 89 90 91
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
92
                self.directly_map(node)
C
channingss 已提交
93 94
            elif op in custom_layers:
                self.deal_custom_layer(node)
95 96
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
C
update  
channingss 已提交
97

C
channingss 已提交
98 99
        self.remove_tmp_data()

C
update  
channingss 已提交
100 101 102 103 104
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
105 106 107 108
            if not hasattr(self, op) and \
                op not in default_op_mapping and \
                op not in custom_layers and \
                op not in self.elementwise_ops:
C
update  
channingss 已提交
109 110 111 112 113 114 115 116 117 118
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
119
    def get_results_of_inference(self, model, value_infos, data_nodes):
120 121
        if not os.path.exists(self.tmp_data_dir):
            os.makedirs(self.tmp_data_dir)
R
root 已提交
122

C
channingss 已提交
123 124
        for data_node in data_nodes:
            value_info = value_infos[data_node]
C
channings 已提交
125 126
            shape = value_info['shape']
            for i, dim_shape in enumerate(shape):
R
root 已提交
127 128 129
                if dim_shape == 0 and i == 0:
                    shape[i] = 1
                if dim_shape == 0 and i != 0:
C
channings 已提交
130
                    assert 'shape of input is not assigned'
R
root 已提交
131
            ipt = np.random.random(shape).astype(value_info['dtype'])
132
            np.save(os.path.join(self.tmp_data_dir, data_node), ipt)
R
root 已提交
133

C
channingss 已提交
134 135 136 137 138 139 140 141 142
        model = onnx.shape_inference.infer_shapes(model)
        outputs = []
        for value_info in model.graph.value_info:
            outputs.append(value_info)

        model.graph.ClearField('output')
        model.graph.output.MergeFrom(outputs)
        onnx.save(model, os.path.join(self.tmp_data_dir,
                                      'onnx_model_infer.onnx'))
C
channingss 已提交
143

C
channingss 已提交
144 145 146 147 148 149 150
        os.system('onnx_infer --save_dir=' + self.tmp_data_dir)
        return

    def get_dynamic_shape(self, layer):
        """
        get dynamic shape from infer_result
        """
151 152 153 154
        path = os.path.join(self.tmp_data_dir, layer + '.npy')
        if not os.path.exists(path):
            return [None, None, None]
        output = np.load(path)
C
channingss 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        return output.tolist(), output.dtype, output.shape

    def get_output_shapes(self):
        """
        build topo_sort of ONNX model
        """
        nodes = self.decoder.model.graph.node
        node_map = self.decoder.onnx_graph.node_map
        value_infos = self.decoder.onnx_graph.value_infos
        onnx_model = self.decoder.model
        for layer in nodes:
            node = node_map[layer.name]
            for opt in layer.output:
                if opt in value_infos:
                    value_info = value_infos[opt]
R
root 已提交
170 171
                    if len(value_info['shape']) == 0 or value_info[
                            'dtype'] is None or 0 in value_info['shape']:
C
channingss 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                        if self.is_inference == False:
                            self.get_results_of_inference(
                                onnx_model, value_infos,
                                self.decoder.onnx_graph.place_holder_nodes)
                            self.is_inference = True
                        _, dtype, shape = self.get_dynamic_shape(opt)
                        node.out_shapes.append(shape)
                        node.dtype = dtype
                    else:
                        node.dtype = value_info['dtype']
                        node.out_shapes.append(value_info['shape'])
                else:
                    if self.is_inference == False:
                        self.get_results_of_inference(
                            onnx_model, value_infos,
                            self.decoder.onnx_graph.place_holder_nodes)
                        self.is_inference = True
                    _, dtype, shape = self.get_dynamic_shape(opt)
                    node.dtype = dtype
                    node.out_shapes.append(shape)

    def remove_tmp_data(self):
        """
        remove temporarily generated file
        """
        if os.path.exists(self.tmp_data_dir):
            import shutil
            shutil.rmtree(self.tmp_data_dir)

C
channingss 已提交
201
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
233
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
234
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
235 236 237 238
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
239 240 241
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
242 243
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
        if fluid_op not in ['shape']:
C
update  
channingss 已提交
244 245
            attr['name'] = string(node.layer_name)
        node.fluid_code.add_layer(fluid_op,
C
channingss 已提交
246
                                  inputs=val_inps[0],
C
update  
channingss 已提交
247 248 249
                                  output=val_outs[0],
                                  param_attr=attr)

C
channingss 已提交
250 251 252
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
253
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
254 255 256 257
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        node.fluid_code.add_layer(func.__code__.co_name,
C
channingss 已提交
258
                                  inputs=node.inputs,
C
channingss 已提交
259 260 261 262 263
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
264
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
265 266 267
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
268

269 270 271
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
272

273 274 275 276
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
R
root 已提交
277 278

        if len(val_x_shape) < len(val_y_shape):
279 280 281 282
            val_x, val_y = val_y, val_x

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
283
        slice_idx = 0
284 285 286 287 288 289
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
313

C
update  
channingss 已提交
314
    def place_holder(self, node):
C
channingss 已提交
315
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
316

C
channings 已提交
317 318
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
319 320 321
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
322
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
323 324
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
325
            "shape": shape,
C
update  
channingss 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
339
        shape = node.out_shapes[0]
C
channingss 已提交
340 341
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
368
    def _interpolate(self, node):
C
channingss 已提交
369 370
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
371
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
R
root 已提交
372

373 374 375 376
        out_shape = val_y.out_shapes[0]
        if out_shape is not None:
            assert len(out_shape) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape = out_shape[2:]
R
root 已提交
377

C
channingss 已提交
378
        scales = _const_weight_or_none(val_scales)
R
root 已提交
379

380 381 382
        if isinstance(val_scales, ONNXGraphNode):
            scales, _, _ = self.get_dynamic_shape(val_scales.layer_name)

R
root 已提交
383
        attr = {'name': string(node.layer_name)}
384
        use_scales = True
C
channingss 已提交
385
        if scales is not None:
386 387 388
            try:
                assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
                assert scales[0] == 1 and scales[
R
root 已提交
389
                    1] == 1, 'only scale on (NC)HW supported'
390
                assert scales[2] == scales[
R
root 已提交
391
                    3], 'only aspect-ratio-invariant scale supported'
392
            except:
R
root 已提交
393
                use_scales = False
C
channingss 已提交
394 395
        scale = scales[2] if scales else None
        if scale is None:
396
            assert out_shape, 'neither scales nor output shape is available'
C
channingss 已提交
397
        else:
398
            if out_shape is None:
C
channingss 已提交
399 400 401 402
                in_shape = val_x.out_shapes[0]
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
403
                out_shape = [in_shape[2] * scale, in_shape[3] * scale]
404

C
channingss 已提交
405
        mode = node.get_attr('mode', 'nearest')
R
root 已提交
406

C
channingss 已提交
407
        fluid_op = 'resize_{}'.format(mode)
408
        if 'linear' in mode:
R
root 已提交
409 410 411
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
412
            fluid_op = 'resize_bilinear'
R
root 已提交
413

414 415
        if use_scales and scale is not None:
            attr['scale'] = scale
R
root 已提交
416
        else:
417
            attr['out_shape'] = out_shape
418

C
channingss 已提交
419 420 421 422
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
423

C
channings 已提交
424 425 426
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
427 428 429

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
430 431 432
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
433 434 435 436 437
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
C
channings 已提交
438
        node.fluid_code.add_layer('roi_align',
R
root 已提交
439 440 441 442
                                  inputs={
                                      'input': val_x,
                                      'rois': val_rois
                                  },
C
channings 已提交
443 444
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
445

C
channings 已提交
446 447 448
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
449

C
channings 已提交
450 451 452
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
453 454 455 456
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
C
channings 已提交
457
        node.fluid_code.add_layer('roi_pool',
R
root 已提交
458 459 460 461
                                  inputs={
                                      'input': val_x,
                                      'rois': val_rois
                                  },
C
channings 已提交
462 463
                                  output=node,
                                  param_attr=attr)
R
root 已提交
464

C
update  
channingss 已提交
465
    def Pad(self, node, op_independent=True):
C
channingss 已提交
466
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
467 468 469
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
470 471
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
493 494 495 496
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
        else:
            attr['name'] = string(node.layer_name + '_paded')
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
            return node.layer_name + '_paded'

    def Unsqueeze(self, node):
C
channingss 已提交
513
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
514
        axes = node.get_attr('axes')
R
root 已提交
515
        if len(val_x.out_shapes[0]) == 0:
516
            node.fluid_code.add_layer('assign',
R
root 已提交
517 518 519
                                      inputs=val_x,
                                      output=node,
                                      param_attr=None)
520 521 522 523 524 525 526
        else:
            attr = {'axes': axes, 'name': string(node.layer_name)}
            node.fluid_code.add_layer('unsqueeze',
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)

C
channingss 已提交
527
    def Shrink(self, node):
C
channingss 已提交
528
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
529 530 531 532 533 534 535 536 537
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
        node.fluid_code.add_layer('hard_shrink',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
538 539 540 541 542 543 544 545
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
546

C
update  
channingss 已提交
547
        shape = node.get_attr('shape', None)
R
root 已提交
548

C
update  
channingss 已提交
549
        if shape is None:
C
channingss 已提交
550
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
551 552 553 554 555 556 557 558
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

559
        if len(value) == 1:
C
channingss 已提交
560
            value = value.tolist()
C
update  
channingss 已提交
561 562 563 564 565 566 567 568 569
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583
        else:
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'attr': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
584 585

    def Resize(self, node):
586 587 588 589 590 591
        self._interpolate(node)

    def Upsample(self, node):
        self._interpolate(node)

    def Expand(self, node):
C
channingss 已提交
592
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
593
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
594 595

        if len(val_shape.outputs) == 1:
596 597
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
598
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
599
        out_shape = node.out_shapes[0]
600
        val_x_dtype = val_x.dtype
R
root 已提交
601 602 603

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
604 605 606 607
        node.fluid_code.add_layer('ones',
                                  inputs=None,
                                  output=name_ones,
                                  param_attr=attr_ones)
R
root 已提交
608 609
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
610 611 612
        node.fluid_code.add_layer('elementwise_mul',
                                  inputs=inputs,
                                  output=node.layer_name,
R
root 已提交
613
                                  param_attr=attr)
C
update  
channingss 已提交
614

C
channingss 已提交
615 616 617 618
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
619
        axis = node.get_attr('axis', 0)
C
channingss 已提交
620
        assert len(
C
Channingss 已提交
621
            indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
622
        if axis == 0 and len(indices_shape) <= 1:
C
channingss 已提交
623
            node.fluid_code.add_layer('gather',
C
channingss 已提交
624 625 626 627
                                      inputs={
                                          'input': val_x,
                                          'index': indices
                                      },
C
channingss 已提交
628 629
                                      output=node,
                                      param_attr=None)
C
channingss 已提交
630 631
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
632 633 634 635 636 637 638 639
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
C
channingss 已提交
640 641 642 643
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
C
channingss 已提交
644 645 646 647 648 649
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
R
root 已提交
650
        elif len(indices_shape) > 1:
C
Channingss 已提交
651
            from functools import reduce
R
root 已提交
652
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
C
Channingss 已提交
653 654 655
            node.fluid_code.add_layer('reshape',
                                      inputs=indices,
                                      output=indices,
R
root 已提交
656 657 658 659
                                      param_attr={'shape': [
                                          reshape_shape,
                                      ]})

C
Channingss 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            node.fluid_code.add_layer('reshape',
                                      inputs=node,
                                      output=node,
R
root 已提交
688
                                      param_attr={'shape': reshaped_shape})
C
channingss 已提交
689

C
channingss 已提交
690
    def Slice(self, node):
C
channingss 已提交
691
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
692
        starts, ends, axes, steps = None, None, None, None
C
channingss 已提交
693 694 695
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
696
            if len(node.inputs) > 3:
C
channings 已提交
697 698 699
                axes = self.graph.get_input_node(node, idx=3, copy=True)
                self.omit_nodes.append(axes.layer_name)
                axes = _const_weight_or_none(axes)
R
root 已提交
700
            if len(node.inputs) > 4:
C
channings 已提交
701 702 703
                steps = self.graph.get_input_node(node, idx=4, copy=True)
                self.omit_nodes.append(steps.layer_name)
                steps = _const_weight_or_none(steps)
R
root 已提交
704

C
channingss 已提交
705 706
            self.omit_nodes.append(starts.layer_name)
            self.omit_nodes.append(ends.layer_name)
C
channings 已提交
707 708
            starts = _const_weight_or_none(starts)
            ends = _const_weight_or_none(ends)
C
channingss 已提交
709 710 711 712
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
C
channingss 已提交
713

C
channingss 已提交
714 715 716 717 718 719
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        shape = val_x.out_shapes[0]

        if shape is not None:
            for idx, value in enumerate(starts):
C
channingss 已提交
720 721
                if value > shape[axes[idx]]:
                    starts[idx] = shape[axes[idx]]
C
channingss 已提交
722
            for idx, value in enumerate(ends):
C
channingss 已提交
723 724
                if value > shape[axes[idx]]:
                    ends[idx] = shape[axes[idx]]
C
channingss 已提交
725 726 727 728 729 730
        attr = {"axes": axes, "starts": starts, "ends": ends}
        node.fluid_code.add_layer('slice',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
731
    def ConstantOfShape(self, node):
C
channingss 已提交
732
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
733
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
734 735 736
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
737
            shape = node.out_shapes[0]
C
update  
channingss 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Split(self, node):
C
channingss 已提交
758 759
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
760 761

        fluid_op = 'split'
C
channingss 已提交
762
        split = node.get_attr('split')
C
update  
channingss 已提交
763
        axis = node.get_attr('axis', 0)
C
channingss 已提交
764 765 766 767 768
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
769

C
update  
channingss 已提交
770
        node.fluid_code.add_layer('split',
C
channingss 已提交
771 772
                                  inputs=val_x,
                                  output=val_y,
C
update  
channingss 已提交
773 774 775
                                  param_attr=attr)

    def Reshape(self, node):
C
channingss 已提交
776 777
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
778 779
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
C
channingss 已提交
780

C
update  
channingss 已提交
781 782
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)
R
root 已提交
783

784
        attr = {'name': string(node.layer_name)}
C
update  
channingss 已提交
785 786
        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
C
channingss 已提交
787
            shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
788
            if val_shape.dtype == 'int64':
R
root 已提交
789
                val_shape_cast = val_shape.layer_name + '_cast'
790
                node.fluid_code.add_layer('cast',
R
root 已提交
791 792 793 794
                                          inputs=val_shape,
                                          output=val_shape_cast,
                                          param_attr={'dtype': string('int32')})

795 796 797
                attr['actual_shape'] = val_shape_cast
            else:
                attr['actual_shape'] = val_shape
C
channings 已提交
798

C
update  
channingss 已提交
799
        if shape is None:
C
channingss 已提交
800
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
801 802

        if shape is None:
C
channingss 已提交
803
            shape = [1, -1]
C
update  
channingss 已提交
804 805 806
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
807 808
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
R
root 已提交
809

810
        attr['shape'] = shape
C
update  
channingss 已提交
811 812 813 814 815 816
        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
C
channingss 已提交
817
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)

    def AveragePool(self, node):
C
channingss 已提交
834
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
835 836

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
837 838 839 840 841 842 843 844
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
845

C
channingss 已提交
846 847
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
848
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
849
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
850 851 852 853 854 855
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
874
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
875 876 877 878 879 880 881
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
        node.fluid_code.add_layer('concat',
C
channingss 已提交
882
                                  inputs=inputs,
C
update  
channingss 已提交
883 884 885 886
                                  output=node,
                                  param_attr=attr)

    def Flatten(self, node):
C
channingss 已提交
887
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
888 889 890 891 892 893 894 895
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Gemm(self, node):
C
channingss 已提交
896 897 898
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
916

C
update  
channingss 已提交
917 918 919 920 921 922 923 924 925
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
            else:
C
channingss 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
939 940

    def Sum(self, node):
941
        val_inps = node.layer.input
942
        inputs = {
C
channingss 已提交
943 944
            "x": self.graph.get_input_node(node, idx=0, copy=True),
            "y": self.graph.get_input_node(node, idx=1, copy=True),
945 946
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
947

C
channingss 已提交
948 949
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
950 951
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
952
                "y": y,
953 954 955 956
            }
            node.fluid_code.add_layer("elementwise_add",
                                      inputs=inputs,
                                      output=node)
C
update  
channingss 已提交
957 958

    def MatMul(self, node):
C
channingss 已提交
959 960
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
961 962 963 964 965 966 967 968
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def BatchNormalization(self, node):
C
channingss 已提交
969 970 971 972 973
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
974 975 976 977 978 979 980 981 982

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
983 984
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
985 986 987 988
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
989
            "is_test": True,
C
update  
channingss 已提交
990 991 992 993
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
994
            "use_global_stats": spatial,
C
update  
channingss 已提交
995 996 997 998 999 1000 1001 1002
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
C
channingss 已提交
1003
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1004 1005 1006 1007 1008 1009 1010 1011
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Relu(self, node):
C
channingss 已提交
1012
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1013 1014 1015 1016 1017 1018 1019
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def PRelu(self, node):
C
channingss 已提交
1020 1021
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1022

C
channingss 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
C
update  
channingss 已提交
1033 1034 1035 1036 1037 1038
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
C
channingss 已提交
1039 1040 1041
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
C
update  
channingss 已提交
1042 1043 1044 1045
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1046

C
channings 已提交
1047 1048 1049 1050
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer("equal",
R
root 已提交
1051 1052 1053 1054
                                  inputs={
                                      'x': val_x,
                                      'y': val_y
                                  },
C
channings 已提交
1055 1056
                                  output=node,
                                  param_attr=None)
R
root 已提交
1057

C
channings 已提交
1058 1059 1060 1061
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1062

C
channings 已提交
1063 1064 1065 1066 1067
        not_condition = condition.layer_name + '_not'
        node.fluid_code.add_layer("logical_not",
                                  inputs=condition,
                                  output=not_condition,
                                  param_attr=None)
R
root 已提交
1068
        cast_not_condition = not_condition + '_cast'
C
channings 已提交
1069 1070 1071
        node.fluid_code.add_layer("cast",
                                  inputs=not_condition,
                                  output=cast_not_condition,
R
root 已提交
1072
                                  param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1073 1074 1075 1076
        cast_condition = condition.layer_name + '_cast'
        node.fluid_code.add_layer("cast",
                                  inputs=condition,
                                  output=cast_condition,
R
root 已提交
1077 1078
                                  param_attr={'dtype': string(val_x.dtype)})
        mul_val_x = val_x.layer_name + '_mul'
C
channings 已提交
1079
        node.fluid_code.add_layer("elementwise_mul",
R
root 已提交
1080 1081 1082 1083
                                  inputs={
                                      'x': val_x,
                                      'y': cast_condition
                                  },
C
channings 已提交
1084 1085
                                  output=mul_val_x,
                                  param_attr=None)
R
root 已提交
1086

C
channings 已提交
1087 1088
        mul_val_y = val_y.layer_name + '_mul'
        node.fluid_code.add_layer("elementwise_mul",
R
root 已提交
1089 1090 1091 1092
                                  inputs={
                                      'x': val_y,
                                      'y': cast_not_condition
                                  },
C
channings 已提交
1093 1094
                                  output=mul_val_y,
                                  param_attr=None)
R
root 已提交
1095

C
channings 已提交
1096
        node.fluid_code.add_layer("elementwise_add",
R
root 已提交
1097 1098 1099 1100
                                  inputs={
                                      'x': mul_val_x,
                                      'y': mul_val_y
                                  },
C
channings 已提交
1101 1102
                                  output=node,
                                  param_attr=None)
R
root 已提交
1103 1104 1105 1106 1107

    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        where_name = node.layer_name + '_where'
        node.fluid_code.add_layer("where",
R
root 已提交
1108
                                  inputs=val_x.layer_name + '!=0',
R
root 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
                                  output=where_name)
        dims = len(val_x.out_shapes[0])
        elements_count_val_x = reduce(lambda x, y: x * y, val_x.out_shapes[0])
        flatten_names = []
        for dim in range(dims):
            slice_name = node.layer_name + '_slice' + str(dim)
            flatten_name = node.layer_name + '_flatten' + str(dim)
            flatten_names.append(flatten_name)
            attr = {
                'axes': list(range(dims)),
                'starts': [0, dim],
                'ends': [elements_count_val_x, dim + 1]
            }
            node.fluid_code.add_layer("slice",
                                      inputs=where_name,
                                      output=slice_name,
                                      param_attr=attr)
            node.fluid_code.add_layer("flatten",
                                      inputs=slice_name,
                                      output=flatten_name,
                                      param_attr={'axis': 0})
        node.fluid_code.add_layer("concat",
                                  inputs=flatten_names,
                                  output=node,
                                  param_attr={'axis': 0})

C
update  
channingss 已提交
1135
    def Identity(self, node):
C
channingss 已提交
1136
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1137
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1138

C
channings 已提交
1139 1140 1141 1142 1143
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
        assert repeats is not None, 'for OP:Tile, only const repeats supported'
R
root 已提交
1144

C
channings 已提交
1145 1146
        if isinstance(repeats, int):
            repeats = [repeats]
R
root 已提交
1147

C
channings 已提交
1148
        attr = {
R
root 已提交
1149
            'expand_times': repeats,
C
channings 已提交
1150 1151
            "name": string(node.layer_name),
        }
R
root 已提交
1152 1153
        node.fluid_code.add_layer("expand",
                                  inputs=val_x,
C
channings 已提交
1154 1155
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1156

C
update  
channingss 已提交
1157
    def MaxPool(self, node):
C
channingss 已提交
1158
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1159

C
channingss 已提交
1160
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1172

C
channingss 已提交
1173 1174
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1175
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1176
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
1177 1178 1179 1180 1181 1182
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channings 已提交
1197
    def _global_pool(self, node):
C
channingss 已提交
1198
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1199
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
1200 1201
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1202 1203 1204 1205 1206 1207 1208
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
R
root 已提交
1209

C
channings 已提交
1210 1211 1212 1213 1214 1215
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1216
        attr = {
C
channings 已提交
1217
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1218 1219 1220 1221 1222 1223 1224
            "global_pooling": True,
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1225

C
channings 已提交
1226 1227
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1228

C
channings 已提交
1229 1230
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1231

C
update  
channingss 已提交
1232
    def Conv(self, node):
C
channingss 已提交
1233 1234
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1235 1236 1237 1238 1239 1240
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1241
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1242 1243 1244
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1245
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1246 1247
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1248
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1249 1250 1251 1252 1253 1254 1255
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1256
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1257 1258
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1259
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
1284 1285

    def ConvTranspose(self, node):
C
channingss 已提交
1286 1287
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1288
        val_b = None
R
root 已提交
1289
        if len(node.layer.input) > 2:
C
channingss 已提交
1290 1291
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1292 1293 1294 1295 1296 1297
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1298
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1299 1300 1301
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1302
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1303 1304
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1305 1306 1307 1308 1309
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1310 1311 1312 1313

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1314

C
channingss 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1330
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1331 1332 1333 1334 1335 1336
            'name': string(node.layer_name),
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channings 已提交
1337 1338 1339 1340 1341

    def GRU(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_r = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1342

C
channings 已提交
1343 1344 1345 1346 1347
        val_b = None
        val_len = None
        val_xh = None
        miss_arg_num = 0
        num_ipt = len(node.layer.input)
R
root 已提交
1348
        if num_ipt > 3 and node.layer.input[3] != '':
C
channings 已提交
1349 1350 1351
            val_b = self.graph.get_input_node(node, idx=3, copy=True)
        else:
            miss_arg_num += 1
R
root 已提交
1352 1353 1354 1355
        if num_ipt > 4 and node.layer.input[4] != '':
            val_len = self.graph.get_input_node(node,
                                                idx=4 - miss_arg_num,
                                                copy=True)
C
channings 已提交
1356 1357
        else:
            miss_arg_num += 1
R
root 已提交
1358 1359 1360 1361 1362
        if num_ipt > 5 and node.layer.input[5] != '':
            val_xh = self.graph.get_input_node(node,
                                               idx=5 - miss_arg_num,
                                               copy=True)

C
channings 已提交
1363
        data, dtype, shape = self.get_dynamic_shape(val_x.layer_name)
R
root 已提交
1364

C
channings 已提交
1365
        x_shape = val_x.out_shapes[0]
R
root 已提交
1366

C
channings 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        assert x_shape[1] == 1, 'only X with batch_size = 1 supported'
        assert node.get_attr('clip', None) is None, 'clipping not supported'

        hidden_size = node.get_attr('hidden_size', None)
        if hidden_size is None:
            r_shape = val_r.out_shapes[0]
            if r_shape:
                hidden_size = r_shape[-1]
        if hidden_size is None:
            w_shape = var_w.out_shapes[0]
            if w_shape:
                hidden_size = w_shape[-2] // 3
        if hidden_size is None and val_b:
            b_shape = val_b.out_shapes[0]
            if b_shape:
                hidden_size = b_shape[-1] // 6
        if hidden_size is None and val_xh:
            xh_shape = val_xh.out_shapes[0]
            if xh_shape:
                hidden_size = xh_shape[-1]
R
root 已提交
1387 1388

        direction = node.get_attr('direction', 'forward')
C
channings 已提交
1389
        assert direction != 'bidirectional', 'direction = bidirectional not supported'
R
root 已提交
1390

C
channings 已提交
1391 1392
        activations = node.get_attr('activations', ['Sigmoid', 'Tanh'])
        assert len(activations) == 2, 'bidirectional operation not supported'
R
root 已提交
1393 1394 1395 1396

        assert node.get_attr('linear_before_reset',
                             0) == 0, 'only linear_before_reset = 0 supported'

C
channings 已提交
1397 1398 1399
        activations = [s.lower() for s in activations]
        gate_activation, candidate_activation = activations
        is_reverse = direction == 'reverse'
R
root 已提交
1400

C
channings 已提交
1401 1402 1403 1404
        var_x0 = node.layer_name + '_x0'
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_x,
                                  output=var_x0,
R
root 已提交
1405 1406 1407 1408 1409
                                  param_attr={
                                      'axes': [1],
                                      'name': string(var_x0)
                                  })

C
channings 已提交
1410 1411 1412 1413
        var_w0 = node.layer_name + '_w0'
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_w,
                                  output=var_w0,
R
root 已提交
1414 1415 1416 1417 1418
                                  param_attr={
                                      'axes': [0],
                                      'name': string(var_w0)
                                  })

C
channings 已提交
1419 1420 1421
        var_fc = node.layer_name + '_fc'
        var_mm = (node.layer_name + '_mm') if val_b else var_fc
        node.fluid_code.add_layer('matmul',
R
root 已提交
1422 1423 1424 1425
                                  inputs={
                                      'x': var_x0,
                                      'y': var_w0
                                  },
C
channings 已提交
1426
                                  output=var_mm,
R
root 已提交
1427 1428 1429 1430 1431 1432
                                  param_attr={
                                      'transpose_x': 0,
                                      'transpose_y': 1,
                                      'name': string(var_mm)
                                  })

C
channings 已提交
1433 1434 1435 1436
        var_r0 = node.layer_name + '_r0'
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_r,
                                  output=var_r0,
R
root 已提交
1437 1438 1439 1440 1441 1442 1443
                                  param_attr={
                                      'axes': [0],
                                      'name': string(var_r0)
                                  })

        var_r0t = node.layer_name + '_r0t'

C
channings 已提交
1444 1445 1446
        node.fluid_code.add_layer('transpose',
                                  inputs=var_r0,
                                  output=var_r0t,
R
root 已提交
1447 1448 1449 1450
                                  param_attr={
                                      'perm': [1, 0],
                                      'name': string(var_r0t)
                                  })
C
channings 已提交
1451 1452 1453 1454
        if val_b:
            var_bi = node.layer_name + '_bi'
            var_bh = node.layer_name + '_bh'
            node.fluid_code.add_layer('split',
R
root 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
                                      inputs=val_b,
                                      output=var_bi + ',' + var_bh,
                                      param_attr={
                                          'axis':
                                          1,
                                          'split':
                                          [hidden_size * 3, hidden_size * 3],
                                          'name':
                                          string(node.layer_name + '.b/split')
                                      })
C
channings 已提交
1465 1466
            var_bi0 = node.layer_name + '_bi0'
            node.fluid_code.add_layer('squeeze',
R
root 已提交
1467 1468 1469 1470 1471 1472 1473
                                      inputs=var_bi,
                                      output=var_bi0,
                                      param_attr={
                                          'axes': [0],
                                          'name': string(var_bi0)
                                      })

C
channings 已提交
1474
            node.fluid_code.add_layer('elmentwise_add',
R
root 已提交
1475 1476 1477 1478 1479 1480 1481 1482
                                      inputs=[var_mm, var_bi0],
                                      output=var_fc,
                                      param_attr={
                                          'axes':
                                          1,
                                          'name':
                                          string(node.layer_name + '.i/bias')
                                      })
C
channings 已提交
1483 1484 1485 1486

        if val_xh:
            var_xh0 = node.layer_name + '_xh0'
            node.fluid_code.add_layer('squeeze',
R
root 已提交
1487 1488 1489 1490 1491 1492
                                      inputs=val_xh,
                                      output=var_xh0,
                                      param_attr={
                                          'axes': [1],
                                          'name': string(var_xh0)
                                      })
C
channings 已提交
1493
        var_y00 = node.layer_name + '_y00'
R
root 已提交
1494 1495 1496

        attr = {
            'origin_mode': True,
C
channings 已提交
1497
            'h_0': var_xh0 if val_xh else None,
R
root 已提交
1498 1499 1500 1501 1502
            'is_reverse': is_reverse,
            'gate_activation': string(gate_activation),
            'candidate_activation': string(candidate_activation),
            'param_attr': string(var_r0t),
            'bias_attr': string(var_bh) if val_b else False,
C
channings 已提交
1503 1504
        }
        node.fluid_code.add_layer('dynamic_gru',
R
root 已提交
1505
                                  inputs=var_fc + ',' + str(hidden_size),
C
channings 已提交
1506 1507
                                  output=var_y00,
                                  param_attr=attr)
R
root 已提交
1508

C
channings 已提交
1509
        num_opt = len(node.layer.output)
R
root 已提交
1510 1511

        if num_opt > 0 and node.layer.output[0] != '':
C
channings 已提交
1512
            node.fluid_code.add_layer('unsqueeze',
R
root 已提交
1513 1514 1515 1516 1517 1518 1519
                                      inputs=var_y00,
                                      output=node.layer.output[0],
                                      param_attr={
                                          'axes': [1, 1],
                                          'name': string(node.layer.output[0])
                                      })
        if num_opt > 1 and node.layer.output[1] != '':
C
channings 已提交
1520
            node.fluid_code.add_layer('unsqueeze',
R
root 已提交
1521 1522 1523 1524 1525 1526
                                      inputs=var_y00,
                                      output=node.layer.output[1],
                                      param_attr={
                                          'axes': [1, 1],
                                          'name': string(node.layer.output[1])
                                      })