onnx_op_mapper.py 33.3 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
24
from x2paddle.op_mapper.onnx_custom_layer import *
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx.numpy_helper as numpy_helper
C
update  
channingss 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40
import logging as _logging
from collections import OrderedDict as _dict

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
    if 'Constant' in node.layer_name:
        return val.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
41 42 43 44 45 46 47 48
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


C
update  
channingss 已提交
49 50 51 52 53 54 55 56
class ONNXOpMapper(OpMapper):
    def __init__(self, decoder):
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
57
        self.used_custom_layers = dict()
C
update  
channingss 已提交
58 59 60 61 62

        if not self.op_checker():
            raise Exception("Model are not supported yet.")

        #mapping op
C
updatea  
channingss 已提交
63 64 65 66 67
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
68 69 70 71 72 73 74
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
75
                self.directly_map(node)
C
channingss 已提交
76 77
            elif op in custom_layers:
                self.deal_custom_layer(node)
C
update  
channingss 已提交
78 79 80 81 82 83

    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
C
channingss 已提交
84 85 86
            if not hasattr(
                    self, op
            ) and op not in default_op_mapping and op not in custom_layers:
C
update  
channingss 已提交
87 88 89 90 91 92 93 94 95 96
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
97
    def directly_map(self, node, *args, name='', **kwargs):
C
update  
channingss 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map

        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
        val_inps = inputs if input_perm is None else list(
            map(lambda i: inputs[i], input_perm))
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
        if fluid_op not in ['shape', 'gather']:
            attr['name'] = string(node.layer_name)
        node.fluid_code.add_layer(fluid_op,
                                  inputs=', '.join(val_inps),
                                  output=val_outs[0],
                                  param_attr=attr)

C
channingss 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    def deal_custom_layer(self, node):
        op = node.layer_type
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        custom_code, func = make_custom_layer(node)
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        inputs_node = []
        inputs_node.append(node.inputs[0])
        node.fluid_code.add_layer(func.__code__.co_name,
                                  inputs=inputs_node[0],
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code

C
update  
channingss 已提交
159
    def place_holder(self, node):
C
channingss 已提交
160
        self.input_shapes.append(node.out_shapes[0])
C
update  
channingss 已提交
161 162
        attr = {
            "dtype": string(node.dtype),
C
channingss 已提交
163
            "shape": node.out_shapes[0],
C
update  
channingss 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
177
        shape = node.out_shapes[0]
C
update  
channingss 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
210 211
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
233 234 235 236
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
        else:
            attr['name'] = string(node.layer_name + '_paded')
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
            return node.layer_name + '_paded'

    def Unsqueeze(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, 'name': string(node.layer_name)}
        node.fluid_code.add_layer('unsqueeze',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)
        if shape is None:
C
channingss 已提交
272
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

        value = value.tolist()
        if len(value) == 1:  # scalar
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Resize(self, node):
        # I/O
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_scales = self.graph.get_node(node.layer.input[1], copy=True)
        val_y, = self.graph.get_node(node.layer.output[0], copy=True)

C
channingss 已提交
299
        out_shape_ = val_y.out_shapes[0]
C
update  
channingss 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        if out_shape_ is not None:
            assert len(out_shape_) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape_ = out_shape_[2:]
        scales = _const_weight_or_none(val_scales)
        if scales is not None:
            assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
            assert scales[0] == 1 and scales[
                1] == 1, 'only scale on (NC)HW supported'
            assert scales[2] == scales[
                3], 'only aspect-ratio-invariant scale supported'
        scale = scales[2] if scales else None
        if scale is None:
            assert out_shape_, 'neither scales nor output shape is available'
            out_shape = out_shape_
        else:
            out_shape = None
            if out_shape_ is None:
C
channingss 已提交
317
                in_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
                out_shape_ = [in_shape[2] * scale, in_shape[3] * scale]

        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
        name_attr = ', name={}'.format(repr(name)) if name else ''

        attr = {
            'scale': scale,
            'out_shape': out_shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def ConstantOfShape(self, node):
        val_shape = self.graph.get_node(node.layer.input[0], copy=True)
C
channingss 已提交
339
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
340 341 342
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
343
            shape = node.out_shapes[0]
C
update  
channingss 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Split(self, node):
        val_input = self.graph.get_node(node.layer.input[0], copy=True)
        var_outs = [val for val in node.layer.input]

        fluid_op = 'split'
        split = node.get_attr['split']
        axis = node.get_attr('axis', 0)
        attr = {'split': split, 'axis': axis, 'name': string(node.layer_name)}
        # generation
        node.fluid_code.add_layer('split',
                                  inputs=val_input,
                                  output=var_outs,
                                  param_attr=attr)

    def Reshape(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_shape = self.graph.get_node(node.layer.input[1], copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)

        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
            shape = self.decoder.get_dynamic_shape_from_caffe2(
                val_shape.layer_name, self.input_shapes)
        if shape is None:
C
channingss 已提交
390
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
391 392 393 394 395 396

        shape_dtype = val_shape.dtype

        if shape_dtype is None:
            _logger.warning(
                'in op %s(%s -> Reshape -> %s): '
C
channingss 已提交
397 398
                'dtype of input "shape" not inferred, int32 assumed',
                node.layer_name, val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
399 400
            shape_dtype = _np.dtype('int32')
        if shape is None:
C
channingss 已提交
401
            shape = [1, -1]
C
update  
channingss 已提交
402 403 404
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
405 406
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        attr = {'shape': shape, 'name': string(node.layer_name)}

        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
        val_input = self.graph.get_node(node.layer.input[0], copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)

    def AveragePool(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
C
channingss 已提交
433 434

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
435 436 437 438 439 440 441 442 443
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)
C
channingss 已提交
444

C
channingss 已提交
445
        input_shape = val_x.out_shapes[0]
C
channingss 已提交
446
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
447 448 449 450 451 452
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_node(node.layer.input[i], copy=True)
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
        node.fluid_code.add_layer('concat',
                                  inputs='[' + ', '.join(inputs) + ']',
                                  output=node,
                                  param_attr=attr)

    def Flatten(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Gemm(self, node):
        val_a = self.graph.get_node(node.layer.input[0], copy=True)
        val_b = self.graph.get_node(node.layer.input[1], copy=True)
        val_c = self.graph.get_node(node.layer.input[2], copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
513

C
update  
channingss 已提交
514 515 516 517 518 519 520 521 522
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
            else:
C
channingss 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

    def Add(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {
            "x": val_x,
            "y": val_y,
        }
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        var_inps = [val for val in node.layer.input]
        node.fluid_code.add_layer("sum",
                                  inputs='[' + ', '.join(var_inps) + ']',
                                  output=node)

    def MatMul(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def BatchNormalization(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_scale = self.graph.get_node(node.layer.input[1], copy=True)
        val_b = self.graph.get_node(node.layer.input[2], copy=True)
        val_mean = self.graph.get_node(node.layer.input[3], copy=True)
        val_var = self.graph.get_node(node.layer.input[4], copy=True)

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
581 582
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
583 584 585 586
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
587
            "is_test": True,
C
update  
channingss 已提交
588 589 590 591
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
592
            "use_global_stats": spatial,
C
update  
channingss 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("softmax",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Div(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {'x': val_x, 'y': val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("elementwise_div",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def Relu(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def PRelu(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_slope = self.graph.get_node(node.layer.input[1], copy=True)

C
channingss 已提交
639 640 641 642 643 644 645 646 647 648
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
C
update  
channingss 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        attr = {'axes': squeeze_dims, "name": string(node.layer_name)}
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Identity(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)

    def MaxPool(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)

C
channingss 已提交
670
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
671 672 673 674 675 676 677 678 679 680 681 682
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)
C
channingss 已提交
683

C
channingss 已提交
684
        input_shape = val_x.out_shapes[0]
C
channingss 已提交
685
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
686 687 688 689 690 691
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def GlobalAveragePool(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
709 710
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
        attr = {
            "pool_type": string("avg"),
            "global_pooling": True,
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Conv(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_w = self.graph.get_node(node.layer.input[1], copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)
C
channingss 已提交
734
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
735 736 737 738 739 740 741

        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_node(node.layer.input[2], copy=True)
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
742
        kernel_shape = val_w.out_shapes[0][2:]  # OI...
C
update  
channingss 已提交
743 744 745 746
        assert kernel_shape == node.get_attr(
            'kernel_shape'), 'kernel_shape in attr unmatches value_info'  # HW
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
747
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
748 749 750 751 752 753 754 755 756
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
757
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

    def ConvTranspose(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_w = self.graph.get_node(node.layer.input[1], copy=True)
        val_b = self.graph.get_node(node.layer.input[2], copy=True)

        self.omit_nodes.append(val_w.layer_name)
        self.omit_nodes.append(val_b.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape', val_w.out_shapes[0][2:])
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
        num_out_channels = val_w.out_shapes[0][1]  # IO...
        fluid_op = 'conv{}d_transpose'.format(convnd)

        num_groups = node.get_attr('group', 1)  # optional
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        output_size = node.get_attr('output_shape', [])  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
811

C
channingss 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
            'bias_attr': string(val_b.layer_name),
            'name': string(node.layer_name),
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)