onnx_op_mapper.py 46.6 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
23
from x2paddle.op_mapper.onnx_custom_layer import *
C
channingss 已提交
24
from x2paddle.core.util import string
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx
C
channingss 已提交
27
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
28
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
29 30
import logging as _logging
from collections import OrderedDict as _dict
C
channingss 已提交
31
import math
C
channingss 已提交
32 33
import os
import shutil
C
update  
channingss 已提交
34 35 36 37 38 39

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
    if 'Constant' in node.layer_name:
C
channingss 已提交
40
        return node.value
C
update  
channingss 已提交
41 42 43 44 45
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
46 47 48 49 50 51 52 53
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


54
class ONNXOpMapper(OpMapper):
55 56 57 58 59
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
60 61 62
        'Pow': 'elementwise_pow',
    }

C
channingss 已提交
63
    def __init__(self, decoder, save_dir):
C
update  
channingss 已提交
64 65 66 67 68 69
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
70
        self.used_custom_layers = dict()
C
channingss 已提交
71 72 73
        self.is_inference = False
        self.tmp_data_dir = os.path.join(save_dir, 'tmp_data')
        self.get_output_shapes()
74

C
update  
channingss 已提交
75 76
        if not self.op_checker():
            raise Exception("Model are not supported yet.")
77

C
update  
channingss 已提交
78
        #mapping op
C
updatea  
channingss 已提交
79 80 81 82 83
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
84 85 86 87 88 89 90
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
91
                self.directly_map(node)
C
channingss 已提交
92 93
            elif op in custom_layers:
                self.deal_custom_layer(node)
94 95
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
C
update  
channingss 已提交
96

C
channingss 已提交
97 98
        self.remove_tmp_data()

C
update  
channingss 已提交
99 100 101 102 103
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
104 105 106 107
            if not hasattr(self, op) and \
                op not in default_op_mapping and \
                op not in custom_layers and \
                op not in self.elementwise_ops:
C
update  
channingss 已提交
108 109 110 111 112 113 114 115 116 117
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
118
    def get_results_of_inference(self, model, value_infos, data_nodes):
119 120 121
        if not os.path.exists(self.tmp_data_dir):
            os.makedirs(self.tmp_data_dir)

C
channingss 已提交
122 123
        for data_node in data_nodes:
            value_info = value_infos[data_node]
C
channings 已提交
124 125 126 127 128 129 130
            shape = value_info['shape']
            for i, dim_shape in enumerate(shape):
                if dim_shape==0 and i==0:
                    shape[i]=1
                if dim_shape==0 and i!=0:
                    assert 'shape of input is not assigned'
            ipt = np.random.random(shape).astype(
C
channingss 已提交
131
                value_info['dtype'])
132
            np.save(os.path.join(self.tmp_data_dir, data_node), ipt)
C
channingss 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

        model = onnx.shape_inference.infer_shapes(model)
        outputs = []
        for value_info in model.graph.value_info:
            outputs.append(value_info)

        model.graph.ClearField('output')
        model.graph.output.MergeFrom(outputs)
        onnx.save(model, os.path.join(self.tmp_data_dir,
                                      'onnx_model_infer.onnx'))
        os.system('onnx_infer --save_dir=' + self.tmp_data_dir)
        return

    def get_dynamic_shape(self, layer):
        """
        get dynamic shape from infer_result
        """
150 151 152 153
        path = os.path.join(self.tmp_data_dir, layer + '.npy')
        if not os.path.exists(path):
            return [None, None, None]
        output = np.load(path)
C
channingss 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        return output.tolist(), output.dtype, output.shape

    def get_output_shapes(self):
        """
        build topo_sort of ONNX model
        """
        nodes = self.decoder.model.graph.node
        node_map = self.decoder.onnx_graph.node_map
        value_infos = self.decoder.onnx_graph.value_infos
        onnx_model = self.decoder.model
        for layer in nodes:
            node = node_map[layer.name]
            for opt in layer.output:
                if opt in value_infos:
                    value_info = value_infos[opt]
169 170
                    if len(value_info['shape']) == 0 or value_info[
                            'dtype'] is None or 0 in value_info['shape']:
C
channingss 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
                        if self.is_inference == False:
                            self.get_results_of_inference(
                                onnx_model, value_infos,
                                self.decoder.onnx_graph.place_holder_nodes)
                            self.is_inference = True
                        _, dtype, shape = self.get_dynamic_shape(opt)
                        node.out_shapes.append(shape)
                        node.dtype = dtype
                    else:
                        node.dtype = value_info['dtype']
                        node.out_shapes.append(value_info['shape'])
                else:
                    if self.is_inference == False:
                        self.get_results_of_inference(
                            onnx_model, value_infos,
                            self.decoder.onnx_graph.place_holder_nodes)
                        self.is_inference = True
                    _, dtype, shape = self.get_dynamic_shape(opt)
                    node.dtype = dtype
                    node.out_shapes.append(shape)

    def remove_tmp_data(self):
        """
        remove temporarily generated file
        """
        if os.path.exists(self.tmp_data_dir):
            import shutil
            shutil.rmtree(self.tmp_data_dir)

C
channingss 已提交
200
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
232
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
233
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
234 235 236 237
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
238 239 240
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
241 242
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
        if fluid_op not in ['shape']:
C
update  
channingss 已提交
243 244
            attr['name'] = string(node.layer_name)
        node.fluid_code.add_layer(fluid_op,
C
channingss 已提交
245
                                  inputs=val_inps[0],
C
update  
channingss 已提交
246 247 248
                                  output=val_outs[0],
                                  param_attr=attr)

C
channingss 已提交
249 250 251
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
252
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
253 254 255 256
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        node.fluid_code.add_layer(func.__code__.co_name,
C
channingss 已提交
257
                                  inputs=node.inputs,
C
channingss 已提交
258 259 260 261 262
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
263
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
264 265 266
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
267

268 269 270
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
271

272 273 274 275
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
276

277 278 279 280 281
        if len(val_x_shape) < len(val_y_shape):
            val_x, val_y = val_y, val_x

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
282
        slice_idx = 0
283 284 285 286 287 288
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
312

C
update  
channingss 已提交
313
    def place_holder(self, node):
C
channingss 已提交
314
        self.input_shapes.append(node.out_shapes[0])
C
update  
channingss 已提交
315 316
        attr = {
            "dtype": string(node.dtype),
C
channingss 已提交
317
            "shape": node.out_shapes[0],
C
update  
channingss 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
331
        shape = node.out_shapes[0]
C
update  
channingss 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
359
    def _interpolate(self, node):
C
channingss 已提交
360 361
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
362
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
363

364 365 366 367 368
        out_shape = val_y.out_shapes[0]
        if out_shape is not None:
            assert len(out_shape) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape = out_shape[2:]

C
channingss 已提交
369
        scales = _const_weight_or_none(val_scales)
370 371 372 373 374 375

        if isinstance(val_scales, ONNXGraphNode):
            scales, _, _ = self.get_dynamic_shape(val_scales.layer_name)

        attr = {'name': string(node.layer_name)}
        use_scales = True
C
channingss 已提交
376
        if scales is not None:
377 378 379 380 381 382 383 384
            try:
                assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
                assert scales[0] == 1 and scales[
                    1] == 1, 'only scale on (NC)HW supported'
                assert scales[2] == scales[
                    3], 'only aspect-ratio-invariant scale supported'
            except:
                use_scales = False
C
channingss 已提交
385 386
        scale = scales[2] if scales else None
        if scale is None:
387
            assert out_shape, 'neither scales nor output shape is available'
C
channingss 已提交
388
        else:
389
            if out_shape is None:
C
channingss 已提交
390 391 392 393
                in_shape = val_x.out_shapes[0]
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
394
                out_shape = [in_shape[2] * scale, in_shape[3] * scale]
395

C
channingss 已提交
396
        mode = node.get_attr('mode', 'nearest')
397

C
channingss 已提交
398
        fluid_op = 'resize_{}'.format(mode)
399
        if 'linear' in mode:
400
            print(
401
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
402
            )
403
            fluid_op = 'resize_bilinear'
404

405 406 407 408
        if use_scales and scale is not None:
            attr['scale'] = scale
        else:
            attr['out_shape'] = out_shape
409

C
channingss 已提交
410 411 412 413 414
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
415
    def Pad(self, node, op_independent=True):
C
channingss 已提交
416
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
417 418 419
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
420 421
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
443 444 445 446
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
        else:
            attr['name'] = string(node.layer_name + '_paded')
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
            return node.layer_name + '_paded'

    def Unsqueeze(self, node):
C
channingss 已提交
463
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
464
        axes = node.get_attr('axes')
465
        if len(val_x.out_shapes[0]) == 0:
466
            node.fluid_code.add_layer('assign',
467 468 469
                                      inputs=val_x,
                                      output=node,
                                      param_attr=None)
470 471 472 473 474 475 476
        else:
            attr = {'axes': axes, 'name': string(node.layer_name)}
            node.fluid_code.add_layer('unsqueeze',
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)

C
channingss 已提交
477
    def Shrink(self, node):
C
channingss 已提交
478
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
479 480 481 482 483 484 485 486 487
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
        node.fluid_code.add_layer('hard_shrink',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
488 489 490 491 492 493 494 495 496 497
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)
498

C
update  
channingss 已提交
499
        if shape is None:
C
channingss 已提交
500
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
501 502 503 504 505 506 507 508
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

509
        if len(value) == 1:
C
channingss 已提交
510
            value = value.tolist()
C
update  
channingss 已提交
511 512 513 514 515 516 517 518 519
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533
        else:
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'attr': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
534 535

    def Resize(self, node):
536 537 538 539 540 541
        self._interpolate(node)

    def Upsample(self, node):
        self._interpolate(node)

    def Expand(self, node):
C
channingss 已提交
542
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
543
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
544 545 546 547

        if len(val_shape.outputs) == 1:
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
548
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
549
        out_shape = node.out_shapes[0]
550
        val_x_dtype = val_x.dtype
C
update  
channingss 已提交
551

552
        name_ones = node.layer_name + '_ones'
553
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
554 555 556 557 558 559 560 561 562
        node.fluid_code.add_layer('ones',
                                  inputs=None,
                                  output=name_ones,
                                  param_attr=attr_ones)
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
        node.fluid_code.add_layer('elementwise_mul',
                                  inputs=inputs,
                                  output=node.layer_name,
C
update  
channingss 已提交
563 564
                                  param_attr=attr)

C
channingss 已提交
565 566 567 568
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
569
        axis = node.get_attr('axis', 0)
C
channingss 已提交
570
        assert len(
C
Channingss 已提交
571
            indices_shape) <= 2, "Gather op don't support dim of indice >2 "
C
channingss 已提交
572
        if axis == 0 and len(indices_shape) <= 1:
C
channingss 已提交
573
            node.fluid_code.add_layer('gather',
C
channingss 已提交
574 575 576 577
                                      inputs={
                                          'input': val_x,
                                          'index': indices
                                      },
C
channingss 已提交
578 579
                                      output=node,
                                      param_attr=None)
C
channingss 已提交
580 581
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
582 583 584 585 586 587 588 589
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
C
channingss 已提交
590 591 592 593
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
C
channingss 已提交
594 595 596 597 598 599
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
C
Channingss 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
        elif len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
            node.fluid_code.add_layer('reshape',
                                      inputs=indices,
                                      output=indices,
                                      param_attr={'shape': [
                                          reshape_shape,
                                      ]})

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            node.fluid_code.add_layer('reshape',
                                      inputs=node,
                                      output=node,
                                      param_attr={'shape': reshaped_shape})
C
channingss 已提交
639

C
channingss 已提交
640
    def Slice(self, node):
C
channingss 已提交
641
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        val_starts, val_ends, val_axes, val_steps = None, None, None, None
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            axes = self.graph.get_input_node(node, idx=3, copy=True)
            steps = self.graph.get_input_node(node, idx=4, copy=True)

            self.omit_nodes.append(starts.layer_name)
            self.omit_nodes.append(ends.layer_name)
            self.omit_nodes.append(axes.layer_name)
            self.omit_nodes.append(steps.layer_name)

            starts = _const_weight_or_none(starts).copy()
            ends = _const_weight_or_none(ends).copy()
            axes = _const_weight_or_none(axes)
            steps = _const_weight_or_none(steps)
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
C
channingss 已提交
662

C
channingss 已提交
663 664 665 666 667 668
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        shape = val_x.out_shapes[0]

        if shape is not None:
            for idx, value in enumerate(starts):
C
channingss 已提交
669 670
                if value > shape[axes[idx]]:
                    starts[idx] = shape[axes[idx]]
C
channingss 已提交
671
            for idx, value in enumerate(ends):
C
channingss 已提交
672 673
                if value > shape[axes[idx]]:
                    ends[idx] = shape[axes[idx]]
C
channingss 已提交
674 675 676 677 678 679
        attr = {"axes": axes, "starts": starts, "ends": ends}
        node.fluid_code.add_layer('slice',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
680
    def ConstantOfShape(self, node):
C
channingss 已提交
681
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
682
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
683 684 685
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
686
            shape = node.out_shapes[0]
C
update  
channingss 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Split(self, node):
C
channingss 已提交
707 708
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
709 710

        fluid_op = 'split'
C
channingss 已提交
711
        split = node.get_attr('split')
C
update  
channingss 已提交
712
        axis = node.get_attr('axis', 0)
C
channingss 已提交
713 714 715 716 717
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
718

C
update  
channingss 已提交
719
        node.fluid_code.add_layer('split',
C
channingss 已提交
720 721
                                  inputs=val_x,
                                  output=val_y,
C
update  
channingss 已提交
722 723 724
                                  param_attr=attr)

    def Reshape(self, node):
C
channingss 已提交
725 726
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
727 728
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
C
channingss 已提交
729

C
update  
channingss 已提交
730 731 732
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)

733
        attr = {'name': string(node.layer_name)}
C
update  
channingss 已提交
734 735
        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
C
channingss 已提交
736
            shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
737 738 739 740 741 742 743 744 745 746
            if val_shape.dtype == 'int64':
                val_shape_cast = val_shape.layer_name + '_cast'
                node.fluid_code.add_layer('cast',
                                          inputs=val_shape,
                                          output=val_shape_cast,
                                          param_attr={'dtype': string('int32')})

                attr['actual_shape'] = val_shape_cast
            else:
                attr['actual_shape'] = val_shape
C
update  
channingss 已提交
747
        if shape is None:
C
channingss 已提交
748
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
749 750

        if shape is None:
C
channingss 已提交
751
            shape = [1, -1]
C
update  
channingss 已提交
752 753 754
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
755 756
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
757

758
        attr['shape'] = shape
C
update  
channingss 已提交
759 760 761 762 763 764
        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
C
channingss 已提交
765
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)

    def AveragePool(self, node):
C
channingss 已提交
782
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
783 784

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
785 786 787 788 789 790 791 792
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
793

C
channingss 已提交
794 795
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
796
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
797
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
798 799 800 801 802 803
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
822
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
823 824 825 826 827 828 829
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
        node.fluid_code.add_layer('concat',
C
channingss 已提交
830
                                  inputs=inputs,
C
update  
channingss 已提交
831 832 833 834
                                  output=node,
                                  param_attr=attr)

    def Flatten(self, node):
C
channingss 已提交
835
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
836 837 838 839 840 841 842 843
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Gemm(self, node):
C
channingss 已提交
844 845 846
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
864

C
update  
channingss 已提交
865 866 867 868 869 870 871 872 873
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
            else:
C
channingss 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
887 888

    def Sum(self, node):
889
        val_inps = node.layer.input
890
        inputs = {
C
channingss 已提交
891 892
            "x": self.graph.get_input_node(node, idx=0, copy=True),
            "y": self.graph.get_input_node(node, idx=1, copy=True),
893 894
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
895

C
channingss 已提交
896 897
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
898 899
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
900
                "y": y,
901 902 903 904
            }
            node.fluid_code.add_layer("elementwise_add",
                                      inputs=inputs,
                                      output=node)
C
update  
channingss 已提交
905 906

    def MatMul(self, node):
C
channingss 已提交
907 908
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
909 910 911 912 913 914 915 916
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def BatchNormalization(self, node):
C
channingss 已提交
917 918 919 920 921
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
922 923 924 925 926 927 928 929 930

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
931 932
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
933 934 935 936
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
937
            "is_test": True,
C
update  
channingss 已提交
938 939 940 941
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
942
            "use_global_stats": spatial,
C
update  
channingss 已提交
943 944 945 946 947 948 949 950
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
C
channingss 已提交
951
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
952 953 954 955 956 957 958 959
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Relu(self, node):
C
channingss 已提交
960
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
961 962 963 964 965 966 967
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def PRelu(self, node):
C
channingss 已提交
968 969
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
970

C
channingss 已提交
971 972 973 974 975 976 977 978 979 980
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
C
update  
channingss 已提交
981 982 983 984 985 986
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
C
channingss 已提交
987 988 989
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
C
update  
channingss 已提交
990 991 992 993 994 995
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Identity(self, node):
C
channingss 已提交
996
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
997 998 999
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)

    def MaxPool(self, node):
C
channingss 已提交
1000
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1001

C
channingss 已提交
1002
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1014

C
channingss 已提交
1015 1016
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1017
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1018
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
1019 1020 1021 1022 1023 1024
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def GlobalAveragePool(self, node):
C
channingss 已提交
1040
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1041
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
1042 1043
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
        attr = {
            "pool_type": string("avg"),
            "global_pooling": True,
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Conv(self, node):
C
channingss 已提交
1062 1063
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1064 1065 1066 1067 1068 1069
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1070
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1071 1072 1073
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1074
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1075 1076
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1077
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1078 1079 1080 1081 1082 1083 1084
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1085
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1086 1087
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1088
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
1113 1114

    def ConvTranspose(self, node):
C
channingss 已提交
1115 1116 1117
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
channingss 已提交
1118 1119 1120 1121 1122 1123 1124 1125

        self.omit_nodes.append(val_w.layer_name)
        self.omit_nodes.append(val_b.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1126
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1127 1128 1129
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1130
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1131 1132
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1133 1134 1135 1136 1137
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1138 1139 1140 1141

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1142

C
channingss 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
            'bias_attr': string(val_b.layer_name),
            'name': string(node.layer_name),
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)