onnx_op_mapper.py 39.5 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
23
from x2paddle.op_mapper.onnx_custom_layer import *
C
channingss 已提交
24
from x2paddle.core.util import string
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx.numpy_helper as numpy_helper
C
update  
channingss 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40
import logging as _logging
from collections import OrderedDict as _dict

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
    if 'Constant' in node.layer_name:
        return val.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
41 42 43 44 45 46 47 48
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


C
update  
channingss 已提交
49 50 51 52 53 54 55 56
class ONNXOpMapper(OpMapper):
    def __init__(self, decoder):
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
57
        self.used_custom_layers = dict()
C
update  
channingss 已提交
58 59 60 61 62

        if not self.op_checker():
            raise Exception("Model are not supported yet.")

        #mapping op
C
updatea  
channingss 已提交
63 64 65 66 67
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
68 69 70 71 72 73 74
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
75
                self.directly_map(node)
C
channingss 已提交
76 77
            elif op in custom_layers:
                self.deal_custom_layer(node)
C
update  
channingss 已提交
78 79 80 81 82 83

    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
C
channingss 已提交
84 85 86
            if not hasattr(
                    self, op
            ) and op not in default_op_mapping and op not in custom_layers:
C
update  
channingss 已提交
87 88 89 90 91 92 93 94 95 96
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
97
    def directly_map(self, node, *args, name='', **kwargs):
C
update  
channingss 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map

        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
        val_inps = inputs if input_perm is None else list(
            map(lambda i: inputs[i], input_perm))
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
        if fluid_op not in ['shape', 'gather']:
            attr['name'] = string(node.layer_name)
        node.fluid_code.add_layer(fluid_op,
                                  inputs=', '.join(val_inps),
                                  output=val_outs[0],
                                  param_attr=attr)

C
channingss 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    def deal_custom_layer(self, node):
        op = node.layer_type
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        custom_code, func = make_custom_layer(node)
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        inputs_node = []
        inputs_node.append(node.inputs[0])
        node.fluid_code.add_layer(func.__code__.co_name,
                                  inputs=inputs_node[0],
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code

C
update  
channingss 已提交
159
    def place_holder(self, node):
C
channingss 已提交
160
        self.input_shapes.append(node.out_shapes[0])
C
update  
channingss 已提交
161 162
        attr = {
            "dtype": string(node.dtype),
C
channingss 已提交
163
            "shape": node.out_shapes[0],
C
update  
channingss 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
177
        shape = node.out_shapes[0]
C
update  
channingss 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def _interpolate(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_scales = self.graph.get_node(node.layer.input[1], copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        out_shape_ = val_y.out_shapes[0]
        if out_shape_ is not None:
            assert len(out_shape_) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape_ = out_shape_[2:]
        scales = _const_weight_or_none(val_scales)
        if scales is not None:
            assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
            assert scales[0] == 1 and scales[
                1] == 1, 'only scale on (NC)HW supported'
            assert scales[2] == scales[
                3], 'only aspect-ratio-invariant scale supported'
        scale = scales[2] if scales else None
        if scale is None:
            assert out_shape_, 'neither scales nor output shape is available'
            out_shape = out_shape_
        else:
            out_shape = None
            if out_shape_ is None:
                in_shape = val_x.out_shapes[0]
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
                out_shape_ = [in_shape[2] * scale, in_shape[3] * scale]

        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)

        attr = {
            'scale': scale,
            'out_shape': out_shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
247 248 249 250 251
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
252 253
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
275 276 277 278
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
        else:
            attr['name'] = string(node.layer_name + '_paded')
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
            return node.layer_name + '_paded'

    def Unsqueeze(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, 'name': string(node.layer_name)}
        node.fluid_code.add_layer('unsqueeze',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channingss 已提交
303 304 305 306 307 308 309 310 311 312 313
    def Shrink(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
        node.fluid_code.add_layer('hard_shrink',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
314 315 316 317 318 319 320 321 322 323 324
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)
        if shape is None:
C
channingss 已提交
325
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
326 327 328 329 330 331 332 333 334
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

        if len(value) == 1:  # scalar
C
channingss 已提交
335
            value = value.tolist()
C
update  
channingss 已提交
336 337 338 339 340 341 342 343 344
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358
        else:
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'attr': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
359 360 361 362

    def Resize(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_scales = self.graph.get_node(node.layer.input[1], copy=True)
C
channingss 已提交
363
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
364

C
channingss 已提交
365
        out_shape_ = val_y.out_shapes[0]
C
update  
channingss 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        if out_shape_ is not None:
            assert len(out_shape_) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape_ = out_shape_[2:]
        scales = _const_weight_or_none(val_scales)
        if scales is not None:
            assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
            assert scales[0] == 1 and scales[
                1] == 1, 'only scale on (NC)HW supported'
            assert scales[2] == scales[
                3], 'only aspect-ratio-invariant scale supported'
        scale = scales[2] if scales else None
        if scale is None:
            assert out_shape_, 'neither scales nor output shape is available'
            out_shape = out_shape_
        else:
            out_shape = None
            if out_shape_ is None:
C
channingss 已提交
383
                in_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
                out_shape_ = [in_shape[2] * scale, in_shape[3] * scale]

        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
        attr = {
            'scale': scale,
            'out_shape': out_shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channingss 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    def Upsample(self, node):
        self._interpolate(node)

    def Slice(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        axes = node.get_attr('axes')
        starts = node.get_attr('starts')
        ends = node.get_attr('ends')
        shape = val_x.out_shapes[0]

        if shape is not None:
            for idx, value in enumerate(starts):
                if value > 2**63 - 1 // 2:
                    value = value - ONNX_INT_MAX
                    starts[idx] = shape[axes[idx]] + value
            for idx, value in enumerate(ends):
                if value > 2**63 - 1 // 2:
                    value = value - ONNX_INT_MAX
                    ends[idx] = shape[axes[idx]] + value
        attr = {"axes": axes, "starts": starts, "ends": ends}
        node.fluid_code.add_layer('slice',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
428 429
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_node(node.layer.input[0], copy=True)
C
channingss 已提交
430
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
431 432 433
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
434
            shape = node.out_shapes[0]
C
update  
channingss 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Split(self, node):
        val_input = self.graph.get_node(node.layer.input[0], copy=True)
        var_outs = [val for val in node.layer.input]

        fluid_op = 'split'
        split = node.get_attr['split']
        axis = node.get_attr('axis', 0)
        attr = {'split': split, 'axis': axis, 'name': string(node.layer_name)}
        # generation
        node.fluid_code.add_layer('split',
                                  inputs=val_input,
                                  output=var_outs,
                                  param_attr=attr)

    def Reshape(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_shape = self.graph.get_node(node.layer.input[1], copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)

        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
C
channingss 已提交
478 479
            shape, _, _ = self.decoder.onnx_graph.get_dynamic_shape(
                val_shape.layer_name)
C
update  
channingss 已提交
480
        if shape is None:
C
channingss 已提交
481
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
482 483 484 485 486 487

        shape_dtype = val_shape.dtype

        if shape_dtype is None:
            _logger.warning(
                'in op %s(%s -> Reshape -> %s): '
C
channingss 已提交
488 489
                'dtype of input "shape" not inferred, int32 assumed',
                node.layer_name, val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
490 491
            shape_dtype = _np.dtype('int32')
        if shape is None:
C
channingss 已提交
492
            shape = [1, -1]
C
update  
channingss 已提交
493 494 495
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
496 497
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        attr = {'shape': shape, 'name': string(node.layer_name)}

        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
        val_input = self.graph.get_node(node.layer.input[0], copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)

    def AveragePool(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
C
channingss 已提交
524 525

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
526 527 528 529 530 531 532 533
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
534

C
channingss 已提交
535
        input_shape = val_x.out_shapes[0]
C
channingss 已提交
536 537
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
538
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
539 540 541 542 543 544
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_node(node.layer.input[i], copy=True)
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
        node.fluid_code.add_layer('concat',
                                  inputs='[' + ', '.join(inputs) + ']',
                                  output=node,
                                  param_attr=attr)

    def Flatten(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Gemm(self, node):
        val_a = self.graph.get_node(node.layer.input[0], copy=True)
        val_b = self.graph.get_node(node.layer.input[1], copy=True)
        val_c = self.graph.get_node(node.layer.input[2], copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
605

C
update  
channingss 已提交
606 607 608 609 610 611 612 613 614
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
            else:
C
channingss 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

    def Add(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {
            "x": val_x,
            "y": val_y,
        }
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
        val_inps = [val for val in node.layer.input]
        flag = 1
        inputs = {
            "x": val_inps[0],
            "y": val_inps[1],
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
        for ipt in val_inps[2:]:
            inputs = {
                "x": node.layer_name,
                "y": ipt,
            }
            node.fluid_code.add_layer("elementwise_add",
                                      inputs=inputs,
                                      output=node)
C
update  
channingss 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

    def MatMul(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def BatchNormalization(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_scale = self.graph.get_node(node.layer.input[1], copy=True)
        val_b = self.graph.get_node(node.layer.input[2], copy=True)
        val_mean = self.graph.get_node(node.layer.input[3], copy=True)
        val_var = self.graph.get_node(node.layer.input[4], copy=True)

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
684 685
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
686 687 688 689
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
690
            "is_test": True,
C
update  
channingss 已提交
691 692 693 694
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
695
            "use_global_stats": spatial,
C
update  
channingss 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channingss 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    def Mul(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.input[1], copy=True)

        val_x_shape = val_x.out_shapes[0]
        val_y_shape = val_y.out_shapes[0]

        slice_idx = 0
        for dim in val_y_shape:
            if dim == 1:
                slice_idx += 1
            else:
                break
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer("elementwise_mul",
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer("elementwise_mul",
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)

C
update  
channingss 已提交
749 750 751
    def Div(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.input[1], copy=True)
C
channingss 已提交
752 753 754 755 756 757 758 759 760 761

        val_x_shape = val_x.out_shapes[0]
        val_y_shape = val_y.out_shapes[0]

        slice_idx = 0
        for dim in val_y_shape:
            if dim == 1:
                slice_idx += 1
            else:
                break
C
update  
channingss 已提交
762
        attr = {"name": string(node.layer_name)}
C
channingss 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer("elementwise_div",
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer("elementwise_div",
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797

    def Relu(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def PRelu(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_slope = self.graph.get_node(node.layer.input[1], copy=True)

C
channingss 已提交
798 799 800 801 802 803 804 805 806 807
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
C
update  
channingss 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        attr = {'axes': squeeze_dims, "name": string(node.layer_name)}
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Identity(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)

    def MaxPool(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)

C
channingss 已提交
829
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
830 831 832 833 834 835 836 837 838 839 840
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
841

C
channingss 已提交
842
        input_shape = val_x.out_shapes[0]
C
channingss 已提交
843 844
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
845
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
846 847 848 849 850 851
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def GlobalAveragePool(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
869 870
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
        attr = {
            "pool_type": string("avg"),
            "global_pooling": True,
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Conv(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_w = self.graph.get_node(node.layer.input[1], copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_node(node.layer.input[2], copy=True)
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
901
        kernel_shape = val_w.out_shapes[0][2:]  # OI...
C
update  
channingss 已提交
902 903 904 905
        assert kernel_shape == node.get_attr(
            'kernel_shape'), 'kernel_shape in attr unmatches value_info'  # HW
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
906
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
907 908 909 910 911 912 913
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
914
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
915 916
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
917
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

    def ConvTranspose(self, node):
        val_x = self.graph.get_node(node.layer.input[0], copy=True)
        val_w = self.graph.get_node(node.layer.input[1], copy=True)
        val_b = self.graph.get_node(node.layer.input[2], copy=True)

        self.omit_nodes.append(val_w.layer_name)
        self.omit_nodes.append(val_b.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape', val_w.out_shapes[0][2:])
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
959
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
960 961
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
962 963 964 965 966
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
967 968 969 970

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
971

C
channingss 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
            'bias_attr': string(val_b.layer_name),
            'name': string(node.layer_name),
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)