onnx_op_mapper.py 61.9 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
23
from x2paddle.op_mapper.onnx_custom_layer import *
C
channingss 已提交
24
from x2paddle.core.util import string
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx
C
channingss 已提交
27
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
28
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
29 30
import logging as _logging
from collections import OrderedDict as _dict
C
channingss 已提交
31
import math
C
channingss 已提交
32 33
import os
import shutil
R
root 已提交
34
from functools import reduce
R
root 已提交
35

C
update  
channingss 已提交
36 37 38 39
_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
C
channings 已提交
40
    if 'Constant' in node.layer_type:
C
channingss 已提交
41
        return node.value
C
update  
channingss 已提交
42 43 44 45 46
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
47 48 49 50 51 52 53 54
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


R
root 已提交
55
class ONNXOpMapper(OpMapper):
56 57 58 59 60
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
61 62
        'Pow': 'elementwise_pow',
    }
63

C
channingss 已提交
64
    def __init__(self, decoder, save_dir):
C
update  
channingss 已提交
65 66 67 68 69 70
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
71
        self.used_custom_layers = dict()
C
channingss 已提交
72 73 74
        self.is_inference = False
        self.tmp_data_dir = os.path.join(save_dir, 'tmp_data')
        self.get_output_shapes()
R
root 已提交
75

C
update  
channingss 已提交
76 77
        if not self.op_checker():
            raise Exception("Model are not supported yet.")
R
root 已提交
78

C
update  
channingss 已提交
79
        #mapping op
C
updatea  
channingss 已提交
80 81 82 83 84
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
85 86 87 88 89 90 91
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
92
                self.directly_map(node)
C
channingss 已提交
93 94
            elif op in custom_layers:
                self.deal_custom_layer(node)
95 96
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
C
update  
channingss 已提交
97

C
channingss 已提交
98 99
        self.remove_tmp_data()

C
update  
channingss 已提交
100 101 102 103 104
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
105 106 107 108
            if not hasattr(self, op) and \
                op not in default_op_mapping and \
                op not in custom_layers and \
                op not in self.elementwise_ops:
C
update  
channingss 已提交
109 110 111 112 113 114 115 116 117 118
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
119
    def get_results_of_inference(self, model, value_infos, data_nodes):
120 121
        if not os.path.exists(self.tmp_data_dir):
            os.makedirs(self.tmp_data_dir)
R
root 已提交
122

C
channingss 已提交
123 124
        for data_node in data_nodes:
            value_info = value_infos[data_node]
C
channings 已提交
125 126
            shape = value_info['shape']
            for i, dim_shape in enumerate(shape):
R
root 已提交
127 128 129
                if dim_shape == 0 and i == 0:
                    shape[i] = 1
                if dim_shape == 0 and i != 0:
C
channings 已提交
130
                    assert 'shape of input is not assigned'
R
root 已提交
131
            ipt = np.random.random(shape).astype(value_info['dtype'])
132
            np.save(os.path.join(self.tmp_data_dir, data_node), ipt)
R
root 已提交
133

C
channingss 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        model = onnx.shape_inference.infer_shapes(model)
        outputs = []
        for value_info in model.graph.value_info:
            outputs.append(value_info)

        model.graph.ClearField('output')
        model.graph.output.MergeFrom(outputs)
        onnx.save(model, os.path.join(self.tmp_data_dir,
                                      'onnx_model_infer.onnx'))
        os.system('onnx_infer --save_dir=' + self.tmp_data_dir)
        return

    def get_dynamic_shape(self, layer):
        """
        get dynamic shape from infer_result
        """
150 151 152 153
        path = os.path.join(self.tmp_data_dir, layer + '.npy')
        if not os.path.exists(path):
            return [None, None, None]
        output = np.load(path)
C
channingss 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        return output.tolist(), output.dtype, output.shape

    def get_output_shapes(self):
        """
        build topo_sort of ONNX model
        """
        nodes = self.decoder.model.graph.node
        node_map = self.decoder.onnx_graph.node_map
        value_infos = self.decoder.onnx_graph.value_infos
        onnx_model = self.decoder.model
        for layer in nodes:
            node = node_map[layer.name]
            for opt in layer.output:
                if opt in value_infos:
                    value_info = value_infos[opt]
R
root 已提交
169 170
                    if len(value_info['shape']) == 0 or value_info[
                            'dtype'] is None or 0 in value_info['shape']:
C
channingss 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
                        if self.is_inference == False:
                            self.get_results_of_inference(
                                onnx_model, value_infos,
                                self.decoder.onnx_graph.place_holder_nodes)
                            self.is_inference = True
                        _, dtype, shape = self.get_dynamic_shape(opt)
                        node.out_shapes.append(shape)
                        node.dtype = dtype
                    else:
                        node.dtype = value_info['dtype']
                        node.out_shapes.append(value_info['shape'])
                else:
                    if self.is_inference == False:
                        self.get_results_of_inference(
                            onnx_model, value_infos,
                            self.decoder.onnx_graph.place_holder_nodes)
                        self.is_inference = True
                    _, dtype, shape = self.get_dynamic_shape(opt)
                    node.dtype = dtype
                    node.out_shapes.append(shape)

    def remove_tmp_data(self):
        """
        remove temporarily generated file
        """
        if os.path.exists(self.tmp_data_dir):
            import shutil
            shutil.rmtree(self.tmp_data_dir)

C
channingss 已提交
200
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
232
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
233
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
234 235 236 237
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
238 239 240
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
241 242
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
        if fluid_op not in ['shape']:
C
update  
channingss 已提交
243 244
            attr['name'] = string(node.layer_name)
        node.fluid_code.add_layer(fluid_op,
C
channingss 已提交
245
                                  inputs=val_inps[0],
C
update  
channingss 已提交
246 247 248
                                  output=val_outs[0],
                                  param_attr=attr)

C
channingss 已提交
249 250 251
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
252
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
253 254 255 256
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        node.fluid_code.add_layer(func.__code__.co_name,
C
channingss 已提交
257
                                  inputs=node.inputs,
C
channingss 已提交
258 259 260 261 262
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
263
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
264 265 266
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
267

268 269 270
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
271

272 273 274 275
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
R
root 已提交
276 277

        if len(val_x_shape) < len(val_y_shape):
278 279 280 281
            val_x, val_y = val_y, val_x

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
282
        slice_idx = 0
283 284 285 286 287 288
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
312

C
update  
channingss 已提交
313
    def place_holder(self, node):
C
channingss 已提交
314
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
315

C
channings 已提交
316 317
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
318 319 320
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
321
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
322 323
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
324
            "shape": shape,
C
update  
channingss 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
338
        shape = node.out_shapes[0]
C
update  
channingss 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
366
    def _interpolate(self, node):
C
channingss 已提交
367 368
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
369
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
R
root 已提交
370

371 372 373 374
        out_shape = val_y.out_shapes[0]
        if out_shape is not None:
            assert len(out_shape) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape = out_shape[2:]
R
root 已提交
375

C
channingss 已提交
376
        scales = _const_weight_or_none(val_scales)
R
root 已提交
377

378 379 380
        if isinstance(val_scales, ONNXGraphNode):
            scales, _, _ = self.get_dynamic_shape(val_scales.layer_name)

R
root 已提交
381
        attr = {'name': string(node.layer_name)}
382
        use_scales = True
C
channingss 已提交
383
        if scales is not None:
384 385 386
            try:
                assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
                assert scales[0] == 1 and scales[
R
root 已提交
387
                    1] == 1, 'only scale on (NC)HW supported'
388
                assert scales[2] == scales[
R
root 已提交
389
                    3], 'only aspect-ratio-invariant scale supported'
390
            except:
R
root 已提交
391
                use_scales = False
C
channingss 已提交
392 393
        scale = scales[2] if scales else None
        if scale is None:
394
            assert out_shape, 'neither scales nor output shape is available'
C
channingss 已提交
395
        else:
396
            if out_shape is None:
C
channingss 已提交
397 398 399 400
                in_shape = val_x.out_shapes[0]
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
401
                out_shape = [in_shape[2] * scale, in_shape[3] * scale]
402

C
channingss 已提交
403
        mode = node.get_attr('mode', 'nearest')
R
root 已提交
404

C
channingss 已提交
405
        fluid_op = 'resize_{}'.format(mode)
406
        if 'linear' in mode:
R
root 已提交
407 408 409
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
410
            fluid_op = 'resize_bilinear'
R
root 已提交
411

412 413
        if use_scales and scale is not None:
            attr['scale'] = scale
R
root 已提交
414
        else:
415
            attr['out_shape'] = out_shape
416

C
channingss 已提交
417 418 419 420
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
421

C
channings 已提交
422 423 424
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
425 426 427

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
428 429 430
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
431 432 433 434 435
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
C
channings 已提交
436
        node.fluid_code.add_layer('roi_align',
R
root 已提交
437 438 439 440
                                  inputs={
                                      'input': val_x,
                                      'rois': val_rois
                                  },
C
channings 已提交
441 442
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
443

C
channings 已提交
444 445 446
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
447

C
channings 已提交
448 449 450
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
451 452 453 454
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
C
channings 已提交
455
        node.fluid_code.add_layer('roi_pool',
R
root 已提交
456 457 458 459
                                  inputs={
                                      'input': val_x,
                                      'rois': val_rois
                                  },
C
channings 已提交
460 461
                                  output=node,
                                  param_attr=attr)
R
root 已提交
462

C
update  
channingss 已提交
463
    def Pad(self, node, op_independent=True):
C
channingss 已提交
464
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
465 466 467
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
468 469
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
491 492 493 494
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
        else:
            attr['name'] = string(node.layer_name + '_paded')
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
            return node.layer_name + '_paded'

    def Unsqueeze(self, node):
C
channingss 已提交
511
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
512
        axes = node.get_attr('axes')
R
root 已提交
513
        if len(val_x.out_shapes[0]) == 0:
514
            node.fluid_code.add_layer('assign',
R
root 已提交
515 516 517
                                      inputs=val_x,
                                      output=node,
                                      param_attr=None)
518 519 520 521 522 523 524
        else:
            attr = {'axes': axes, 'name': string(node.layer_name)}
            node.fluid_code.add_layer('unsqueeze',
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)

C
channingss 已提交
525
    def Shrink(self, node):
C
channingss 已提交
526
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
527 528 529 530 531 532 533 534 535
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
        node.fluid_code.add_layer('hard_shrink',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
536 537 538 539 540 541 542 543
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
544

C
update  
channingss 已提交
545
        shape = node.get_attr('shape', None)
R
root 已提交
546

C
update  
channingss 已提交
547
        if shape is None:
C
channingss 已提交
548
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
549 550 551 552 553 554 555 556
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

557
        if len(value) == 1:
C
channingss 已提交
558
            value = value.tolist()
C
update  
channingss 已提交
559 560 561 562 563 564 565 566 567
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581
        else:
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'attr': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
582 583

    def Resize(self, node):
584 585 586 587 588 589
        self._interpolate(node)

    def Upsample(self, node):
        self._interpolate(node)

    def Expand(self, node):
C
channingss 已提交
590
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
591
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
592 593

        if len(val_shape.outputs) == 1:
594 595
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
596
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
597
        out_shape = node.out_shapes[0]
598
        val_x_dtype = val_x.dtype
R
root 已提交
599 600 601

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
602 603 604 605
        node.fluid_code.add_layer('ones',
                                  inputs=None,
                                  output=name_ones,
                                  param_attr=attr_ones)
R
root 已提交
606 607
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
608 609 610
        node.fluid_code.add_layer('elementwise_mul',
                                  inputs=inputs,
                                  output=node.layer_name,
R
root 已提交
611
                                  param_attr=attr)
C
update  
channingss 已提交
612

C
channingss 已提交
613 614 615 616
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
617
        axis = node.get_attr('axis', 0)
C
channingss 已提交
618
        assert len(
C
Channingss 已提交
619
            indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
620
        if axis == 0 and len(indices_shape) <= 1:
C
channingss 已提交
621
            node.fluid_code.add_layer('gather',
C
channingss 已提交
622 623 624 625
                                      inputs={
                                          'input': val_x,
                                          'index': indices
                                      },
C
channingss 已提交
626 627
                                      output=node,
                                      param_attr=None)
C
channingss 已提交
628 629
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
630 631 632 633 634 635 636 637
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
C
channingss 已提交
638 639 640 641
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
C
channingss 已提交
642 643 644 645 646 647
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
R
root 已提交
648
        elif len(indices_shape) > 1:
C
Channingss 已提交
649
            from functools import reduce
R
root 已提交
650
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
C
Channingss 已提交
651 652 653
            node.fluid_code.add_layer('reshape',
                                      inputs=indices,
                                      output=indices,
R
root 已提交
654 655 656 657
                                      param_attr={'shape': [
                                          reshape_shape,
                                      ]})

C
Channingss 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            node.fluid_code.add_layer('reshape',
                                      inputs=node,
                                      output=node,
R
root 已提交
686
                                      param_attr={'shape': reshaped_shape})
C
channingss 已提交
687

C
channingss 已提交
688
    def Slice(self, node):
C
channingss 已提交
689
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
690
        starts, ends, axes, steps = None, None, None, None
C
channingss 已提交
691 692 693
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
694
            if len(node.inputs) > 3:
C
channings 已提交
695 696 697
                axes = self.graph.get_input_node(node, idx=3, copy=True)
                self.omit_nodes.append(axes.layer_name)
                axes = _const_weight_or_none(axes)
R
root 已提交
698
            if len(node.inputs) > 4:
C
channings 已提交
699 700 701
                steps = self.graph.get_input_node(node, idx=4, copy=True)
                self.omit_nodes.append(steps.layer_name)
                steps = _const_weight_or_none(steps)
R
root 已提交
702

C
channingss 已提交
703 704
            self.omit_nodes.append(starts.layer_name)
            self.omit_nodes.append(ends.layer_name)
C
channings 已提交
705 706
            starts = _const_weight_or_none(starts)
            ends = _const_weight_or_none(ends)
C
channingss 已提交
707 708 709 710
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
C
channingss 已提交
711

C
channingss 已提交
712 713 714 715 716 717
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        shape = val_x.out_shapes[0]

        if shape is not None:
            for idx, value in enumerate(starts):
C
channingss 已提交
718 719
                if value > shape[axes[idx]]:
                    starts[idx] = shape[axes[idx]]
C
channingss 已提交
720
            for idx, value in enumerate(ends):
C
channingss 已提交
721 722
                if value > shape[axes[idx]]:
                    ends[idx] = shape[axes[idx]]
C
channingss 已提交
723 724 725 726 727 728
        attr = {"axes": axes, "starts": starts, "ends": ends}
        node.fluid_code.add_layer('slice',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
729
    def ConstantOfShape(self, node):
C
channingss 已提交
730
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
731
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
732 733 734
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
735
            shape = node.out_shapes[0]
C
update  
channingss 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Split(self, node):
C
channingss 已提交
756 757
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
758 759

        fluid_op = 'split'
C
channingss 已提交
760
        split = node.get_attr('split')
C
update  
channingss 已提交
761
        axis = node.get_attr('axis', 0)
C
channingss 已提交
762 763 764 765 766
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
767

C
update  
channingss 已提交
768
        node.fluid_code.add_layer('split',
C
channingss 已提交
769 770
                                  inputs=val_x,
                                  output=val_y,
C
update  
channingss 已提交
771 772 773
                                  param_attr=attr)

    def Reshape(self, node):
C
channingss 已提交
774 775
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
776 777
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
C
channingss 已提交
778

C
update  
channingss 已提交
779 780
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)
R
root 已提交
781

782
        attr = {'name': string(node.layer_name)}
C
update  
channingss 已提交
783 784
        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
C
channingss 已提交
785
            shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
786
            if val_shape.dtype == 'int64':
R
root 已提交
787
                val_shape_cast = val_shape.layer_name + '_cast'
788
                node.fluid_code.add_layer('cast',
R
root 已提交
789 790 791 792
                                          inputs=val_shape,
                                          output=val_shape_cast,
                                          param_attr={'dtype': string('int32')})

793 794 795
                attr['actual_shape'] = val_shape_cast
            else:
                attr['actual_shape'] = val_shape
C
channings 已提交
796

C
update  
channingss 已提交
797
        if shape is None:
C
channingss 已提交
798
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
799 800

        if shape is None:
C
channingss 已提交
801
            shape = [1, -1]
C
update  
channingss 已提交
802 803 804
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
805 806
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
R
root 已提交
807

808
        attr['shape'] = shape
C
update  
channingss 已提交
809 810 811 812 813 814
        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
C
channingss 已提交
815
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)

    def AveragePool(self, node):
C
channingss 已提交
832
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
833 834

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
835 836 837 838 839 840 841 842
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
843

C
channingss 已提交
844 845
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
846
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
847
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
848 849 850 851 852 853
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
872
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
873 874 875 876 877 878 879
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
        node.fluid_code.add_layer('concat',
C
channingss 已提交
880
                                  inputs=inputs,
C
update  
channingss 已提交
881 882 883 884
                                  output=node,
                                  param_attr=attr)

    def Flatten(self, node):
C
channingss 已提交
885
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
886 887 888 889 890 891 892 893
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Gemm(self, node):
C
channingss 已提交
894 895 896
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
914

C
update  
channingss 已提交
915 916 917 918 919 920 921 922 923
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
            else:
C
channingss 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
937 938

    def Sum(self, node):
939
        val_inps = node.layer.input
940
        inputs = {
C
channingss 已提交
941 942
            "x": self.graph.get_input_node(node, idx=0, copy=True),
            "y": self.graph.get_input_node(node, idx=1, copy=True),
943 944
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
945

C
channingss 已提交
946 947
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
948 949
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
950
                "y": y,
951 952 953 954
            }
            node.fluid_code.add_layer("elementwise_add",
                                      inputs=inputs,
                                      output=node)
C
update  
channingss 已提交
955 956

    def MatMul(self, node):
C
channingss 已提交
957 958
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
959 960 961 962 963 964 965 966
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def BatchNormalization(self, node):
C
channingss 已提交
967 968 969 970 971
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
972 973 974 975 976 977 978 979 980

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
981 982
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
983 984 985 986
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
987
            "is_test": True,
C
update  
channingss 已提交
988 989 990 991
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
992
            "use_global_stats": spatial,
C
update  
channingss 已提交
993 994 995 996 997 998 999 1000
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
C
channingss 已提交
1001
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1002 1003 1004 1005 1006 1007 1008 1009
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Relu(self, node):
C
channingss 已提交
1010
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1011 1012 1013 1014 1015 1016 1017
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def PRelu(self, node):
C
channingss 已提交
1018 1019
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1020

C
channingss 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
C
update  
channingss 已提交
1031 1032 1033 1034 1035 1036
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
C
channingss 已提交
1037 1038 1039
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
C
update  
channingss 已提交
1040 1041 1042 1043
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1044

C
channings 已提交
1045 1046 1047 1048
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer("equal",
R
root 已提交
1049 1050 1051 1052
                                  inputs={
                                      'x': val_x,
                                      'y': val_y
                                  },
C
channings 已提交
1053 1054
                                  output=node,
                                  param_attr=None)
R
root 已提交
1055

C
channings 已提交
1056 1057 1058 1059
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1060

C
channings 已提交
1061 1062 1063 1064 1065
        not_condition = condition.layer_name + '_not'
        node.fluid_code.add_layer("logical_not",
                                  inputs=condition,
                                  output=not_condition,
                                  param_attr=None)
R
root 已提交
1066
        cast_not_condition = not_condition + '_cast'
C
channings 已提交
1067 1068 1069
        node.fluid_code.add_layer("cast",
                                  inputs=not_condition,
                                  output=cast_not_condition,
R
root 已提交
1070
                                  param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1071 1072 1073 1074
        cast_condition = condition.layer_name + '_cast'
        node.fluid_code.add_layer("cast",
                                  inputs=condition,
                                  output=cast_condition,
R
root 已提交
1075 1076
                                  param_attr={'dtype': string(val_x.dtype)})
        mul_val_x = val_x.layer_name + '_mul'
C
channings 已提交
1077
        node.fluid_code.add_layer("elementwise_mul",
R
root 已提交
1078 1079 1080 1081
                                  inputs={
                                      'x': val_x,
                                      'y': cast_condition
                                  },
C
channings 已提交
1082 1083
                                  output=mul_val_x,
                                  param_attr=None)
R
root 已提交
1084

C
channings 已提交
1085 1086
        mul_val_y = val_y.layer_name + '_mul'
        node.fluid_code.add_layer("elementwise_mul",
R
root 已提交
1087 1088 1089 1090
                                  inputs={
                                      'x': val_y,
                                      'y': cast_not_condition
                                  },
C
channings 已提交
1091 1092
                                  output=mul_val_y,
                                  param_attr=None)
R
root 已提交
1093

C
channings 已提交
1094
        node.fluid_code.add_layer("elementwise_add",
R
root 已提交
1095 1096 1097 1098
                                  inputs={
                                      'x': mul_val_x,
                                      'y': mul_val_y
                                  },
C
channings 已提交
1099 1100
                                  output=node,
                                  param_attr=None)
R
root 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        where_name = node.layer_name + '_where'
        node.fluid_code.add_layer("where",
                                  inputs=val_x.layer_name + '==1',
                                  output=where_name)
        dims = len(val_x.out_shapes[0])
        elements_count_val_x = reduce(lambda x, y: x * y, val_x.out_shapes[0])
        flatten_names = []
        for dim in range(dims):
            slice_name = node.layer_name + '_slice' + str(dim)
            flatten_name = node.layer_name + '_flatten' + str(dim)
            flatten_names.append(flatten_name)
            attr = {
                'axes': list(range(dims)),
                'starts': [0, dim],
                'ends': [elements_count_val_x, dim + 1]
            }
            node.fluid_code.add_layer("slice",
                                      inputs=where_name,
                                      output=slice_name,
                                      param_attr=attr)
            node.fluid_code.add_layer("flatten",
                                      inputs=slice_name,
                                      output=flatten_name,
                                      param_attr={'axis': 0})
        node.fluid_code.add_layer("concat",
                                  inputs=flatten_names,
                                  output=node,
                                  param_attr={'axis': 0})

C
update  
channingss 已提交
1133
    def Identity(self, node):
C
channingss 已提交
1134
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1135
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1136

C
channings 已提交
1137 1138 1139 1140 1141
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
        assert repeats is not None, 'for OP:Tile, only const repeats supported'
R
root 已提交
1142

C
channings 已提交
1143 1144
        if isinstance(repeats, int):
            repeats = [repeats]
R
root 已提交
1145

C
channings 已提交
1146
        attr = {
R
root 已提交
1147
            'expand_times': repeats,
C
channings 已提交
1148 1149
            "name": string(node.layer_name),
        }
R
root 已提交
1150 1151
        node.fluid_code.add_layer("expand",
                                  inputs=val_x,
C
channings 已提交
1152 1153
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1154

C
update  
channingss 已提交
1155
    def MaxPool(self, node):
C
channingss 已提交
1156
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1157

C
channingss 已提交
1158
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1170

C
channingss 已提交
1171 1172
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1173
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1174
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
1175 1176 1177 1178 1179 1180
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channings 已提交
1195
    def _global_pool(self, node):
C
channingss 已提交
1196
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1197
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
1198 1199
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1200 1201 1202 1203 1204 1205 1206
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
R
root 已提交
1207

C
channings 已提交
1208 1209 1210 1211 1212 1213
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1214
        attr = {
C
channings 已提交
1215
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1216 1217 1218 1219 1220 1221 1222
            "global_pooling": True,
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1223

C
channings 已提交
1224 1225
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1226

C
channings 已提交
1227 1228
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1229

C
update  
channingss 已提交
1230
    def Conv(self, node):
C
channingss 已提交
1231 1232
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1233 1234 1235 1236 1237 1238
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1239
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1240 1241 1242
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1243
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1244 1245
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1246
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1247 1248 1249 1250 1251 1252 1253
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1254
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1255 1256
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1257
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
1282 1283

    def ConvTranspose(self, node):
C
channingss 已提交
1284 1285
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1286
        val_b = None
R
root 已提交
1287
        if len(node.layer.input) > 2:
C
channingss 已提交
1288 1289
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1290 1291 1292 1293 1294 1295
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1296
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1297 1298 1299
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1300
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1301 1302
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1303 1304 1305 1306 1307
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1308 1309 1310 1311

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1312

C
channingss 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1328
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1329 1330 1331 1332 1333 1334
            'name': string(node.layer_name),
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channings 已提交
1335 1336 1337 1338 1339

    def GRU(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_r = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1340

C
channings 已提交
1341 1342 1343 1344 1345
        val_b = None
        val_len = None
        val_xh = None
        miss_arg_num = 0
        num_ipt = len(node.layer.input)
R
root 已提交
1346
        if num_ipt > 3 and node.layer.input[3] != '':
C
channings 已提交
1347 1348 1349
            val_b = self.graph.get_input_node(node, idx=3, copy=True)
        else:
            miss_arg_num += 1
R
root 已提交
1350 1351 1352 1353
        if num_ipt > 4 and node.layer.input[4] != '':
            val_len = self.graph.get_input_node(node,
                                                idx=4 - miss_arg_num,
                                                copy=True)
C
channings 已提交
1354 1355
        else:
            miss_arg_num += 1
R
root 已提交
1356 1357 1358 1359 1360
        if num_ipt > 5 and node.layer.input[5] != '':
            val_xh = self.graph.get_input_node(node,
                                               idx=5 - miss_arg_num,
                                               copy=True)

C
channings 已提交
1361
        data, dtype, shape = self.get_dynamic_shape(val_x.layer_name)
R
root 已提交
1362

C
channings 已提交
1363
        x_shape = val_x.out_shapes[0]
R
root 已提交
1364

C
channings 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        assert x_shape[1] == 1, 'only X with batch_size = 1 supported'
        assert node.get_attr('clip', None) is None, 'clipping not supported'

        hidden_size = node.get_attr('hidden_size', None)
        if hidden_size is None:
            r_shape = val_r.out_shapes[0]
            if r_shape:
                hidden_size = r_shape[-1]
        if hidden_size is None:
            w_shape = var_w.out_shapes[0]
            if w_shape:
                hidden_size = w_shape[-2] // 3
        if hidden_size is None and val_b:
            b_shape = val_b.out_shapes[0]
            if b_shape:
                hidden_size = b_shape[-1] // 6
        if hidden_size is None and val_xh:
            xh_shape = val_xh.out_shapes[0]
            if xh_shape:
                hidden_size = xh_shape[-1]
R
root 已提交
1385 1386

        direction = node.get_attr('direction', 'forward')
C
channings 已提交
1387
        assert direction != 'bidirectional', 'direction = bidirectional not supported'
R
root 已提交
1388

C
channings 已提交
1389 1390
        activations = node.get_attr('activations', ['Sigmoid', 'Tanh'])
        assert len(activations) == 2, 'bidirectional operation not supported'
R
root 已提交
1391 1392 1393 1394

        assert node.get_attr('linear_before_reset',
                             0) == 0, 'only linear_before_reset = 0 supported'

C
channings 已提交
1395 1396 1397
        activations = [s.lower() for s in activations]
        gate_activation, candidate_activation = activations
        is_reverse = direction == 'reverse'
R
root 已提交
1398

C
channings 已提交
1399 1400 1401 1402
        var_x0 = node.layer_name + '_x0'
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_x,
                                  output=var_x0,
R
root 已提交
1403 1404 1405 1406 1407
                                  param_attr={
                                      'axes': [1],
                                      'name': string(var_x0)
                                  })

C
channings 已提交
1408 1409 1410 1411
        var_w0 = node.layer_name + '_w0'
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_w,
                                  output=var_w0,
R
root 已提交
1412 1413 1414 1415 1416
                                  param_attr={
                                      'axes': [0],
                                      'name': string(var_w0)
                                  })

C
channings 已提交
1417 1418 1419
        var_fc = node.layer_name + '_fc'
        var_mm = (node.layer_name + '_mm') if val_b else var_fc
        node.fluid_code.add_layer('matmul',
R
root 已提交
1420 1421 1422 1423
                                  inputs={
                                      'x': var_x0,
                                      'y': var_w0
                                  },
C
channings 已提交
1424
                                  output=var_mm,
R
root 已提交
1425 1426 1427 1428 1429 1430
                                  param_attr={
                                      'transpose_x': 0,
                                      'transpose_y': 1,
                                      'name': string(var_mm)
                                  })

C
channings 已提交
1431 1432 1433 1434
        var_r0 = node.layer_name + '_r0'
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_r,
                                  output=var_r0,
R
root 已提交
1435 1436 1437 1438 1439 1440 1441
                                  param_attr={
                                      'axes': [0],
                                      'name': string(var_r0)
                                  })

        var_r0t = node.layer_name + '_r0t'

C
channings 已提交
1442 1443 1444
        node.fluid_code.add_layer('transpose',
                                  inputs=var_r0,
                                  output=var_r0t,
R
root 已提交
1445 1446 1447 1448
                                  param_attr={
                                      'perm': [1, 0],
                                      'name': string(var_r0t)
                                  })
C
channings 已提交
1449 1450 1451 1452
        if val_b:
            var_bi = node.layer_name + '_bi'
            var_bh = node.layer_name + '_bh'
            node.fluid_code.add_layer('split',
R
root 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
                                      inputs=val_b,
                                      output=var_bi + ',' + var_bh,
                                      param_attr={
                                          'axis':
                                          1,
                                          'split':
                                          [hidden_size * 3, hidden_size * 3],
                                          'name':
                                          string(node.layer_name + '.b/split')
                                      })
C
channings 已提交
1463 1464
            var_bi0 = node.layer_name + '_bi0'
            node.fluid_code.add_layer('squeeze',
R
root 已提交
1465 1466 1467 1468 1469 1470 1471
                                      inputs=var_bi,
                                      output=var_bi0,
                                      param_attr={
                                          'axes': [0],
                                          'name': string(var_bi0)
                                      })

C
channings 已提交
1472
            node.fluid_code.add_layer('elmentwise_add',
R
root 已提交
1473 1474 1475 1476 1477 1478 1479 1480
                                      inputs=[var_mm, var_bi0],
                                      output=var_fc,
                                      param_attr={
                                          'axes':
                                          1,
                                          'name':
                                          string(node.layer_name + '.i/bias')
                                      })
C
channings 已提交
1481 1482 1483 1484

        if val_xh:
            var_xh0 = node.layer_name + '_xh0'
            node.fluid_code.add_layer('squeeze',
R
root 已提交
1485 1486 1487 1488 1489 1490
                                      inputs=val_xh,
                                      output=var_xh0,
                                      param_attr={
                                          'axes': [1],
                                          'name': string(var_xh0)
                                      })
C
channings 已提交
1491
        var_y00 = node.layer_name + '_y00'
R
root 已提交
1492 1493 1494

        attr = {
            'origin_mode': True,
C
channings 已提交
1495
            'h_0': var_xh0 if val_xh else None,
R
root 已提交
1496 1497 1498 1499 1500
            'is_reverse': is_reverse,
            'gate_activation': string(gate_activation),
            'candidate_activation': string(candidate_activation),
            'param_attr': string(var_r0t),
            'bias_attr': string(var_bh) if val_b else False,
C
channings 已提交
1501 1502
        }
        node.fluid_code.add_layer('dynamic_gru',
R
root 已提交
1503
                                  inputs=var_fc + ',' + str(hidden_size),
C
channings 已提交
1504 1505
                                  output=var_y00,
                                  param_attr=attr)
R
root 已提交
1506

C
channings 已提交
1507
        num_opt = len(node.layer.output)
R
root 已提交
1508 1509

        if num_opt > 0 and node.layer.output[0] != '':
C
channings 已提交
1510
            node.fluid_code.add_layer('unsqueeze',
R
root 已提交
1511 1512 1513 1514 1515 1516 1517
                                      inputs=var_y00,
                                      output=node.layer.output[0],
                                      param_attr={
                                          'axes': [1, 1],
                                          'name': string(node.layer.output[0])
                                      })
        if num_opt > 1 and node.layer.output[1] != '':
C
channings 已提交
1518
            node.fluid_code.add_layer('unsqueeze',
R
root 已提交
1519 1520 1521 1522 1523 1524
                                      inputs=var_y00,
                                      output=node.layer.output[1],
                                      param_attr={
                                          'axes': [1, 1],
                                          'name': string(node.layer.output[1])
                                      })