onnx_op_mapper.py 46.4 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
23
from x2paddle.op_mapper.onnx_custom_layer import *
C
channingss 已提交
24
from x2paddle.core.util import string
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx
C
channingss 已提交
27
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
28
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
29 30
import logging as _logging
from collections import OrderedDict as _dict
C
channingss 已提交
31
import math
C
channingss 已提交
32 33
import os
import shutil
C
update  
channingss 已提交
34 35 36 37 38 39

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
    if 'Constant' in node.layer_name:
C
channingss 已提交
40
        return node.value
C
update  
channingss 已提交
41 42 43 44 45
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
46 47 48 49 50 51 52 53
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


54
class ONNXOpMapper(OpMapper):
55 56 57 58 59
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
60 61 62
        'Pow': 'elementwise_pow',
    }

C
channingss 已提交
63
    def __init__(self, decoder, save_dir):
C
update  
channingss 已提交
64 65 66 67 68 69
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
70
        self.used_custom_layers = dict()
C
channingss 已提交
71 72 73
        self.is_inference = False
        self.tmp_data_dir = os.path.join(save_dir, 'tmp_data')
        self.get_output_shapes()
74

C
update  
channingss 已提交
75 76
        if not self.op_checker():
            raise Exception("Model are not supported yet.")
77

C
update  
channingss 已提交
78
        #mapping op
C
updatea  
channingss 已提交
79 80 81 82 83
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
84 85 86 87 88 89 90
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
91
                self.directly_map(node)
C
channingss 已提交
92 93
            elif op in custom_layers:
                self.deal_custom_layer(node)
94 95
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
C
update  
channingss 已提交
96

C
channingss 已提交
97 98
        self.remove_tmp_data()

C
update  
channingss 已提交
99 100 101 102 103
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
104 105 106 107
            if not hasattr(self, op) and \
                op not in default_op_mapping and \
                op not in custom_layers and \
                op not in self.elementwise_ops:
C
update  
channingss 已提交
108 109 110 111 112 113 114 115 116 117
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
118
    def get_results_of_inference(self, model, value_infos, data_nodes):
119 120 121
        if not os.path.exists(self.tmp_data_dir):
            os.makedirs(self.tmp_data_dir)

C
channingss 已提交
122 123 124 125
        for data_node in data_nodes:
            value_info = value_infos[data_node]
            ipt = np.random.random(value_info['shape']).astype(
                value_info['dtype'])
126
            np.save(os.path.join(self.tmp_data_dir, data_node), ipt)
C
channingss 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

        model = onnx.shape_inference.infer_shapes(model)
        outputs = []
        for value_info in model.graph.value_info:
            outputs.append(value_info)

        model.graph.ClearField('output')
        model.graph.output.MergeFrom(outputs)
        onnx.save(model, os.path.join(self.tmp_data_dir,
                                      'onnx_model_infer.onnx'))
        os.system('onnx_infer --save_dir=' + self.tmp_data_dir)
        return

    def get_dynamic_shape(self, layer):
        """
        get dynamic shape from infer_result
        """
144 145 146 147
        path = os.path.join(self.tmp_data_dir, layer + '.npy')
        if not os.path.exists(path):
            return [None, None, None]
        output = np.load(path)
C
channingss 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        return output.tolist(), output.dtype, output.shape

    def get_output_shapes(self):
        """
        build topo_sort of ONNX model
        """
        nodes = self.decoder.model.graph.node
        node_map = self.decoder.onnx_graph.node_map
        value_infos = self.decoder.onnx_graph.value_infos
        onnx_model = self.decoder.model
        for layer in nodes:
            node = node_map[layer.name]
            for opt in layer.output:
                if opt in value_infos:
                    value_info = value_infos[opt]
163 164
                    if len(value_info['shape']) == 0 or value_info[
                            'dtype'] is None or 0 in value_info['shape']:
C
channingss 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
                        if self.is_inference == False:
                            self.get_results_of_inference(
                                onnx_model, value_infos,
                                self.decoder.onnx_graph.place_holder_nodes)
                            self.is_inference = True
                        _, dtype, shape = self.get_dynamic_shape(opt)
                        node.out_shapes.append(shape)
                        node.dtype = dtype
                    else:
                        node.dtype = value_info['dtype']
                        node.out_shapes.append(value_info['shape'])
                else:
                    if self.is_inference == False:
                        self.get_results_of_inference(
                            onnx_model, value_infos,
                            self.decoder.onnx_graph.place_holder_nodes)
                        self.is_inference = True
                    _, dtype, shape = self.get_dynamic_shape(opt)
                    node.dtype = dtype
                    node.out_shapes.append(shape)

    def remove_tmp_data(self):
        """
        remove temporarily generated file
        """
        if os.path.exists(self.tmp_data_dir):
            import shutil
            shutil.rmtree(self.tmp_data_dir)

C
channingss 已提交
194
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
226
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
227
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
228 229 230 231
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
232 233 234
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
235 236
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
        if fluid_op not in ['shape']:
C
update  
channingss 已提交
237 238
            attr['name'] = string(node.layer_name)
        node.fluid_code.add_layer(fluid_op,
C
channingss 已提交
239
                                  inputs=val_inps[0],
C
update  
channingss 已提交
240 241 242
                                  output=val_outs[0],
                                  param_attr=attr)

C
channingss 已提交
243 244 245
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
246
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
247 248 249 250
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        node.fluid_code.add_layer(func.__code__.co_name,
C
channingss 已提交
251
                                  inputs=node.inputs,
C
channingss 已提交
252 253 254 255 256
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
257
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
258 259 260
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
261

262 263 264
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
265

266 267 268 269
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
270

271 272 273 274 275
        if len(val_x_shape) < len(val_y_shape):
            val_x, val_y = val_y, val_x

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
276
        slice_idx = 0
277 278 279 280 281 282
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
306

C
update  
channingss 已提交
307
    def place_holder(self, node):
C
channingss 已提交
308
        self.input_shapes.append(node.out_shapes[0])
C
update  
channingss 已提交
309 310
        attr = {
            "dtype": string(node.dtype),
C
channingss 已提交
311
            "shape": node.out_shapes[0],
C
update  
channingss 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
325
        shape = node.out_shapes[0]
C
update  
channingss 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
353
    def _interpolate(self, node):
C
channingss 已提交
354 355
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
356
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
357

358 359 360 361 362
        out_shape = val_y.out_shapes[0]
        if out_shape is not None:
            assert len(out_shape) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape = out_shape[2:]

C
channingss 已提交
363
        scales = _const_weight_or_none(val_scales)
364 365 366 367 368 369

        if isinstance(val_scales, ONNXGraphNode):
            scales, _, _ = self.get_dynamic_shape(val_scales.layer_name)

        attr = {'name': string(node.layer_name)}
        use_scales = True
C
channingss 已提交
370
        if scales is not None:
371 372 373 374 375 376 377 378
            try:
                assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
                assert scales[0] == 1 and scales[
                    1] == 1, 'only scale on (NC)HW supported'
                assert scales[2] == scales[
                    3], 'only aspect-ratio-invariant scale supported'
            except:
                use_scales = False
C
channingss 已提交
379 380
        scale = scales[2] if scales else None
        if scale is None:
381
            assert out_shape, 'neither scales nor output shape is available'
C
channingss 已提交
382
        else:
383
            if out_shape is None:
C
channingss 已提交
384 385 386 387
                in_shape = val_x.out_shapes[0]
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
388
                out_shape = [in_shape[2] * scale, in_shape[3] * scale]
389

C
channingss 已提交
390
        mode = node.get_attr('mode', 'nearest')
391

C
channingss 已提交
392
        fluid_op = 'resize_{}'.format(mode)
393
        if 'linear' in mode:
394
            print(
395
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
396
            )
397
            fluid_op = 'resize_bilinear'
398

399 400 401 402
        if use_scales and scale is not None:
            attr['scale'] = scale
        else:
            attr['out_shape'] = out_shape
403

C
channingss 已提交
404 405 406 407 408
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
409
    def Pad(self, node, op_independent=True):
C
channingss 已提交
410
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
411 412 413
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
414 415
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
437 438 439 440
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
        else:
            attr['name'] = string(node.layer_name + '_paded')
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
            return node.layer_name + '_paded'

    def Unsqueeze(self, node):
C
channingss 已提交
457
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
458
        axes = node.get_attr('axes')
459
        if len(val_x.out_shapes[0]) == 0:
460
            node.fluid_code.add_layer('assign',
461 462 463
                                      inputs=val_x,
                                      output=node,
                                      param_attr=None)
464 465 466 467 468 469 470
        else:
            attr = {'axes': axes, 'name': string(node.layer_name)}
            node.fluid_code.add_layer('unsqueeze',
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)

C
channingss 已提交
471
    def Shrink(self, node):
C
channingss 已提交
472
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
473 474 475 476 477 478 479 480 481
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
        node.fluid_code.add_layer('hard_shrink',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
482 483 484 485 486 487 488 489 490 491
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)
492

C
update  
channingss 已提交
493
        if shape is None:
C
channingss 已提交
494
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
495 496 497 498 499 500 501 502
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

503
        if len(value) == 1:
C
channingss 已提交
504
            value = value.tolist()
C
update  
channingss 已提交
505 506 507 508 509 510 511 512 513
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527
        else:
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'attr': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
528 529

    def Resize(self, node):
530 531 532 533 534 535
        self._interpolate(node)

    def Upsample(self, node):
        self._interpolate(node)

    def Expand(self, node):
C
channingss 已提交
536
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
537
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
538 539 540 541

        if len(val_shape.outputs) == 1:
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
542
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
543
        out_shape = node.out_shapes[0]
544
        val_x_dtype = val_x.dtype
C
update  
channingss 已提交
545

546
        name_ones = node.layer_name + '_ones'
547
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
548 549 550 551 552 553 554 555 556
        node.fluid_code.add_layer('ones',
                                  inputs=None,
                                  output=name_ones,
                                  param_attr=attr_ones)
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
        node.fluid_code.add_layer('elementwise_mul',
                                  inputs=inputs,
                                  output=node.layer_name,
C
update  
channingss 已提交
557 558
                                  param_attr=attr)

C
channingss 已提交
559 560 561 562
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
563
        axis = node.get_attr('axis', 0)
C
channingss 已提交
564
        assert len(
C
Channingss 已提交
565
            indices_shape) <= 2, "Gather op don't support dim of indice >2 "
C
channingss 已提交
566
        if axis == 0 and len(indices_shape) <= 1:
C
channingss 已提交
567
            node.fluid_code.add_layer('gather',
C
channingss 已提交
568 569 570 571
                                      inputs={
                                          'input': val_x,
                                          'index': indices
                                      },
C
channingss 已提交
572 573
                                      output=node,
                                      param_attr=None)
C
channingss 已提交
574 575
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
576 577 578 579 580 581 582 583
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
C
channingss 已提交
584 585 586 587
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
C
channingss 已提交
588 589 590 591 592 593
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
C
Channingss 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
        elif len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
            node.fluid_code.add_layer('reshape',
                                      inputs=indices,
                                      output=indices,
                                      param_attr={'shape': [
                                          reshape_shape,
                                      ]})

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            node.fluid_code.add_layer('reshape',
                                      inputs=node,
                                      output=node,
                                      param_attr={'shape': reshaped_shape})
C
channingss 已提交
633

C
channingss 已提交
634
    def Slice(self, node):
C
channingss 已提交
635
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
        val_starts, val_ends, val_axes, val_steps = None, None, None, None
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            axes = self.graph.get_input_node(node, idx=3, copy=True)
            steps = self.graph.get_input_node(node, idx=4, copy=True)

            self.omit_nodes.append(starts.layer_name)
            self.omit_nodes.append(ends.layer_name)
            self.omit_nodes.append(axes.layer_name)
            self.omit_nodes.append(steps.layer_name)

            starts = _const_weight_or_none(starts).copy()
            ends = _const_weight_or_none(ends).copy()
            axes = _const_weight_or_none(axes)
            steps = _const_weight_or_none(steps)
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
C
channingss 已提交
656

C
channingss 已提交
657 658 659 660 661 662
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        shape = val_x.out_shapes[0]

        if shape is not None:
            for idx, value in enumerate(starts):
C
channingss 已提交
663 664
                if value > shape[axes[idx]]:
                    starts[idx] = shape[axes[idx]]
C
channingss 已提交
665
            for idx, value in enumerate(ends):
C
channingss 已提交
666 667
                if value > shape[axes[idx]]:
                    ends[idx] = shape[axes[idx]]
C
channingss 已提交
668 669 670 671 672 673
        attr = {"axes": axes, "starts": starts, "ends": ends}
        node.fluid_code.add_layer('slice',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
674
    def ConstantOfShape(self, node):
C
channingss 已提交
675
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
676
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
677 678 679
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
680
            shape = node.out_shapes[0]
C
update  
channingss 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Split(self, node):
C
channingss 已提交
701 702
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
703 704

        fluid_op = 'split'
C
channingss 已提交
705
        split = node.get_attr('split')
C
update  
channingss 已提交
706
        axis = node.get_attr('axis', 0)
C
channingss 已提交
707 708 709 710 711
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
712

C
update  
channingss 已提交
713
        node.fluid_code.add_layer('split',
C
channingss 已提交
714 715
                                  inputs=val_x,
                                  output=val_y,
C
update  
channingss 已提交
716 717 718
                                  param_attr=attr)

    def Reshape(self, node):
C
channingss 已提交
719 720
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
721 722
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
C
channingss 已提交
723

C
update  
channingss 已提交
724 725 726
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)

727
        attr = {'name': string(node.layer_name)}
C
update  
channingss 已提交
728 729
        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
C
channingss 已提交
730
            shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
731 732 733 734 735 736 737 738 739 740
            if val_shape.dtype == 'int64':
                val_shape_cast = val_shape.layer_name + '_cast'
                node.fluid_code.add_layer('cast',
                                          inputs=val_shape,
                                          output=val_shape_cast,
                                          param_attr={'dtype': string('int32')})

                attr['actual_shape'] = val_shape_cast
            else:
                attr['actual_shape'] = val_shape
C
update  
channingss 已提交
741
        if shape is None:
C
channingss 已提交
742
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
743 744

        if shape is None:
C
channingss 已提交
745
            shape = [1, -1]
C
update  
channingss 已提交
746 747 748
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
749 750
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
751

752
        attr['shape'] = shape
C
update  
channingss 已提交
753 754 755 756 757 758
        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
C
channingss 已提交
759
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)

    def AveragePool(self, node):
C
channingss 已提交
776
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
777 778

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
779 780 781 782 783 784 785 786
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
787

C
channingss 已提交
788 789
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
790
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
791
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
792 793 794 795 796 797
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
816
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
817 818 819 820 821 822 823
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
        node.fluid_code.add_layer('concat',
C
channingss 已提交
824
                                  inputs=inputs,
C
update  
channingss 已提交
825 826 827 828
                                  output=node,
                                  param_attr=attr)

    def Flatten(self, node):
C
channingss 已提交
829
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
830 831 832 833 834 835 836 837
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Gemm(self, node):
C
channingss 已提交
838 839 840
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
858

C
update  
channingss 已提交
859 860 861 862 863 864 865 866 867
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
            else:
C
channingss 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
881 882

    def Sum(self, node):
883
        val_inps = node.layer.input
884
        inputs = {
C
channingss 已提交
885 886
            "x": self.graph.get_input_node(node, idx=0, copy=True),
            "y": self.graph.get_input_node(node, idx=1, copy=True),
887 888
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
889

C
channingss 已提交
890 891
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
892 893
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
894
                "y": y,
895 896 897 898
            }
            node.fluid_code.add_layer("elementwise_add",
                                      inputs=inputs,
                                      output=node)
C
update  
channingss 已提交
899 900

    def MatMul(self, node):
C
channingss 已提交
901 902
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
903 904 905 906 907 908 909 910
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def BatchNormalization(self, node):
C
channingss 已提交
911 912 913 914 915
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
916 917 918 919 920 921 922 923 924

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
925 926
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
927 928 929 930
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
931
            "is_test": True,
C
update  
channingss 已提交
932 933 934 935
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
936
            "use_global_stats": spatial,
C
update  
channingss 已提交
937 938 939 940 941 942 943 944
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
C
channingss 已提交
945
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
946 947 948 949 950 951 952 953
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Relu(self, node):
C
channingss 已提交
954
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
955 956 957 958 959 960 961
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def PRelu(self, node):
C
channingss 已提交
962 963
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
964

C
channingss 已提交
965 966 967 968 969 970 971 972 973 974
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
C
update  
channingss 已提交
975 976 977 978 979 980
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
C
channingss 已提交
981 982 983
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
C
update  
channingss 已提交
984 985 986 987 988 989
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Identity(self, node):
C
channingss 已提交
990
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
991 992 993
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)

    def MaxPool(self, node):
C
channingss 已提交
994
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
995

C
channingss 已提交
996
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1008

C
channingss 已提交
1009 1010
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1011
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1012
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
1013 1014 1015 1016 1017 1018
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def GlobalAveragePool(self, node):
C
channingss 已提交
1034
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1035
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
1036 1037
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
        attr = {
            "pool_type": string("avg"),
            "global_pooling": True,
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Conv(self, node):
C
channingss 已提交
1056 1057
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1058 1059 1060 1061 1062 1063
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1064
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1065 1066 1067
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1068
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1069 1070
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1071
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1072 1073 1074 1075 1076 1077 1078
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1079
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1080 1081
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1082
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
1107 1108

    def ConvTranspose(self, node):
C
channingss 已提交
1109 1110 1111
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
channingss 已提交
1112 1113 1114 1115 1116 1117 1118 1119

        self.omit_nodes.append(val_w.layer_name)
        self.omit_nodes.append(val_b.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1120
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1121 1122 1123
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1124
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1125 1126
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1127 1128 1129 1130 1131
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1132 1133 1134 1135

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1136

C
channingss 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
            'bias_attr': string(val_b.layer_name),
            'name': string(node.layer_name),
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)