model_builder.py 10.7 KB
Newer Older
W
wuzewu 已提交
1
# coding: utf8
W
wuyefeilin 已提交
2
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
W
wuzewu 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import struct

import paddle.fluid as fluid
import numpy as np
from paddle.fluid.proto.framework_pb2 import VarType

import solver
from utils.config import cfg
from loss import multi_softmax_with_loss
W
wuyefeilin 已提交
25 26
from loss import multi_dice_loss
from loss import multi_bce_loss
27
from lovasz_losses import multi_lovasz_hinge_loss, multi_lovasz_softmax_loss
W
wuzewu 已提交
28
from models.modeling import deeplab, unet, icnet, pspnet, hrnet, fast_scnn, ocrnet
W
wuzewu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72


class ModelPhase(object):
    """
    Standard name for model phase in PaddleSeg

    The following standard keys are defined:
    * `TRAIN`: training mode.
    * `EVAL`: testing/evaluation mode.
    * `PREDICT`: prediction/inference mode.
    * `VISUAL` : visualization mode
    """

    TRAIN = 'train'
    EVAL = 'eval'
    PREDICT = 'predict'
    VISUAL = 'visual'

    @staticmethod
    def is_train(phase):
        return phase == ModelPhase.TRAIN

    @staticmethod
    def is_predict(phase):
        return phase == ModelPhase.PREDICT

    @staticmethod
    def is_eval(phase):
        return phase == ModelPhase.EVAL

    @staticmethod
    def is_visual(phase):
        return phase == ModelPhase.VISUAL

    @staticmethod
    def is_valid_phase(phase):
        """ Check valid phase """
        if ModelPhase.is_train(phase) or ModelPhase.is_predict(phase) \
                or ModelPhase.is_eval(phase) or ModelPhase.is_visual(phase):
            return True

        return False


W
wuyefeilin 已提交
73 74 75 76 77 78 79 80 81 82 83 84
def seg_model(image, class_num):
    model_name = cfg.MODEL.MODEL_NAME
    if model_name == 'unet':
        logits = unet.unet(image, class_num)
    elif model_name == 'deeplabv3p':
        logits = deeplab.deeplabv3p(image, class_num)
    elif model_name == 'icnet':
        logits = icnet.icnet(image, class_num)
    elif model_name == 'pspnet':
        logits = pspnet.pspnet(image, class_num)
    elif model_name == 'hrnet':
        logits = hrnet.hrnet(image, class_num)
L
LielinJiang 已提交
85 86
    elif model_name == 'fast_scnn':
        logits = fast_scnn.fast_scnn(image, class_num)
W
wuzewu 已提交
87 88
    elif model_name == 'ocrnet':
        logits = ocrnet.ocrnet(image, class_num)
W
wuzewu 已提交
89 90
    else:
        raise Exception(
L
LielinJiang 已提交
91
            "unknow model name, only support unet, deeplabv3p, icnet, pspnet, hrnet, fast_scnn"
W
wuyefeilin 已提交
92 93
        )
    return logits
W
wuzewu 已提交
94 95 96 97 98 99 100 101


def softmax(logit):
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.softmax(logit)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuyefeilin 已提交
102

W
wuyefeilin 已提交
103 104 105 106 107 108 109 110 111 112 113
def sigmoid_to_softmax(logit):
    """
    one channel to two channel
    """
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit_back = 1 - logit
    logit = fluid.layers.concat([logit_back, logit], axis=-1)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuzewu 已提交
114 115 116 117 118 119 120 121 122 123 124

def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
    if not ModelPhase.is_valid_phase(phase):
        raise ValueError("ModelPhase {} is not valid!".format(phase))
    if ModelPhase.is_train(phase):
        width = cfg.TRAIN_CROP_SIZE[0]
        height = cfg.TRAIN_CROP_SIZE[1]
    else:
        width = cfg.EVAL_CROP_SIZE[0]
        height = cfg.EVAL_CROP_SIZE[1]

125 126
    image_shape = [-1, cfg.DATASET.DATA_DIM, height, width]
    grt_shape = [-1, 1, height, width]
W
wuzewu 已提交
127 128 129 130
    class_num = cfg.DATASET.NUM_CLASSES

    with fluid.program_guard(main_prog, start_prog):
        with fluid.unique_name.guard():
131 132
            # 在导出模型的时候,增加图像标准化预处理,减小预测部署时图像的处理流程
            # 预测部署时只须对输入图像增加batch_size维度即可
133
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
134 135
            label = fluid.data(name='label', shape=grt_shape, dtype='int32')
            mask = fluid.data(name='mask', shape=grt_shape, dtype='int32')
W
wuzewu 已提交
136

137
            # use DataLoader when doing traning and evaluation
W
wuzewu 已提交
138
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
139
                data_loader = fluid.io.DataLoader.from_generator(
W
wuzewu 已提交
140 141 142 143
                    feed_list=[image, label, mask],
                    capacity=cfg.DATALOADER.BUF_SIZE,
                    iterable=False,
                    use_double_buffer=True)
144

W
wuyefeilin 已提交
145
            loss_type = cfg.SOLVER.LOSS
146 147
            if not isinstance(loss_type, list):
                loss_type = list(loss_type)
148

149 150 151
            # lovasz_hinge_loss或dice_loss或bce_loss只适用两类分割中
            if class_num > 2 and (("lovasz_hinge_loss" in loss_type) or
                                  ("dice_loss" in loss_type) or
W
wuyefeilin 已提交
152 153
                                  ("bce_loss" in loss_type)):
                raise Exception(
154
                    "lovasz hinge loss, dice loss and bce loss are only applicable to binary classfication."
W
wuyefeilin 已提交
155 156
                )

157 158 159
            # 在两类分割情况下,当loss函数选择lovasz_hinge_loss或dice_loss或bce_loss的时候,最后logit输出通道数设置为1
            if ("dice_loss" in loss_type) or ("bce_loss" in loss_type) or (
                    "lovasz_hinge_loss" in loss_type):
W
wuyefeilin 已提交
160
                class_num = 1
161 162
                if ("softmax_loss" in loss_type) or (
                        "lovasz_softmax_loss" in loss_type):
W
wuyefeilin 已提交
163
                    raise Exception(
164
                        "softmax loss or lovasz softmax loss can not combine with bce loss or dice loss or lovasz hinge loss."
W
wuyefeilin 已提交
165
                    )
W
wuyefeilin 已提交
166
            cfg.PHASE = phase
W
wuyefeilin 已提交
167
            logits = seg_model(image, class_num)
W
wuzewu 已提交
168

169
            # 根据选择的loss函数计算相应的损失函数
W
wuzewu 已提交
170
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
W
wuyefeilin 已提交
171 172
                loss_valid = False
                avg_loss_list = []
173
                valid_loss = []
L
LielinJiang 已提交
174 175
                if "softmax_loss" in loss_type:
                    weight = cfg.SOLVER.CROSS_ENTROPY_WEIGHT
W
wuyefeilin 已提交
176
                    avg_loss_list.append(
177 178
                        multi_softmax_with_loss(logits, label, mask, class_num,
                                                weight))
W
wuyefeilin 已提交
179
                    loss_valid = True
180
                    valid_loss.append("softmax_loss")
W
wuyefeilin 已提交
181 182 183
                if "dice_loss" in loss_type:
                    avg_loss_list.append(multi_dice_loss(logits, label, mask))
                    loss_valid = True
184
                    valid_loss.append("dice_loss")
W
wuyefeilin 已提交
185 186 187
                if "bce_loss" in loss_type:
                    avg_loss_list.append(multi_bce_loss(logits, label, mask))
                    loss_valid = True
188
                    valid_loss.append("bce_loss")
189 190
                if "lovasz_hinge_loss" in loss_type:
                    avg_loss_list.append(
191
                        multi_lovasz_hinge_loss(logits, label, mask))
192 193 194 195
                    loss_valid = True
                    valid_loss.append("lovasz_hinge_loss")
                if "lovasz_softmax_loss" in loss_type:
                    avg_loss_list.append(
196
                        multi_lovasz_softmax_loss(logits, label, mask))
197 198
                    loss_valid = True
                    valid_loss.append("lovasz_softmax_loss")
W
wuyefeilin 已提交
199
                if not loss_valid:
W
wuyefeilin 已提交
200 201
                    raise Exception(
                        "SOLVER.LOSS: {} is set wrong. it should "
202 203
                        "include one of (softmax_loss, bce_loss, dice_loss, lovasz_hinge_loss, lovasz_softmax_loss) at least"
                        " example: ['softmax_loss'], ['dice_loss'], ['bce_loss', 'dice_loss'], ['lovasz_hinge_loss','bce_loss'], ['lovasz_softmax_loss','softmax_loss']"
W
wuyefeilin 已提交
204 205
                        .format(cfg.SOLVER.LOSS))

206 207
                invalid_loss = [x for x in loss_type if x not in valid_loss]
                if len(invalid_loss) > 0:
W
wuyefeilin 已提交
208 209 210
                    print(
                        "Warning: the loss {} you set is invalid. it will not be included in loss computed."
                        .format(invalid_loss))
211

W
wuyefeilin 已提交
212 213
                avg_loss = 0
                for i in range(0, len(avg_loss_list)):
214 215 216
                    loss_name = valid_loss[i].upper()
                    loss_weight = eval('cfg.SOLVER.LOSS_WEIGHT.' + loss_name)
                    avg_loss += loss_weight * avg_loss_list[i]
W
wuzewu 已提交
217 218 219 220 221 222 223 224 225 226 227 228

            #get pred result in original size
            if isinstance(logits, tuple):
                logit = logits[0]
            else:
                logit = logits

            if logit.shape[2:] != label.shape[2:]:
                logit = fluid.layers.resize_bilinear(logit, label.shape[2:])

            # return image input and logit output for inference graph prune
            if ModelPhase.is_predict(phase):
229
                # 两类分割中,使用lovasz_hinge_loss或dice_loss或bce_loss返回的logit为单通道,进行到两通道的变换
W
wuyefeilin 已提交
230 231 232 233
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
234

235
                return image, logit
236

W
wuyefeilin 已提交
237 238 239 240 241
            if class_num == 1:
                out = sigmoid_to_softmax(logit)
                out = fluid.layers.transpose(out, [0, 2, 3, 1])
            else:
                out = fluid.layers.transpose(logit, [0, 2, 3, 1])
242

W
wuzewu 已提交
243 244 245
            pred = fluid.layers.argmax(out, axis=3)
            pred = fluid.layers.unsqueeze(pred, axes=[3])
            if ModelPhase.is_visual(phase):
W
wuyefeilin 已提交
246 247 248 249
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
W
wuzewu 已提交
250 251 252
                return pred, logit

            if ModelPhase.is_eval(phase):
253
                return data_loader, avg_loss, pred, label, mask
W
wuzewu 已提交
254 255 256 257

            if ModelPhase.is_train(phase):
                optimizer = solver.Solver(main_prog, start_prog)
                decayed_lr = optimizer.optimise(avg_loss)
258
                return data_loader, avg_loss, decayed_lr, pred, label, mask
W
wuzewu 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276


def to_int(string, dest="I"):
    return struct.unpack(dest, string)[0]


def parse_shape_from_file(filename):
    with open(filename, "rb") as file:
        version = file.read(4)
        lod_level = to_int(file.read(8), dest="Q")
        for i in range(lod_level):
            _size = to_int(file.read(8), dest="Q")
            _ = file.read(_size)
        version = file.read(4)
        tensor_desc_size = to_int(file.read(4))
        tensor_desc = VarType.TensorDesc()
        tensor_desc.ParseFromString(file.read(tensor_desc_size))
    return tuple(tensor_desc.dims)