model_builder.py 10.7 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import struct

import paddle.fluid as fluid
import numpy as np
from paddle.fluid.proto.framework_pb2 import VarType

import solver
from utils.config import cfg
from loss import multi_softmax_with_loss
W
wuyefeilin 已提交
25 26
from loss import multi_dice_loss
from loss import multi_bce_loss
27 28
from lovasz_losses import lovasz_hinge
from lovasz_losses import lovasz_softmax
L
LielinJiang 已提交
29
from models.modeling import deeplab, unet, icnet, pspnet, hrnet, fast_scnn
W
wuzewu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


class ModelPhase(object):
    """
    Standard name for model phase in PaddleSeg

    The following standard keys are defined:
    * `TRAIN`: training mode.
    * `EVAL`: testing/evaluation mode.
    * `PREDICT`: prediction/inference mode.
    * `VISUAL` : visualization mode
    """

    TRAIN = 'train'
    EVAL = 'eval'
    PREDICT = 'predict'
    VISUAL = 'visual'

    @staticmethod
    def is_train(phase):
        return phase == ModelPhase.TRAIN

    @staticmethod
    def is_predict(phase):
        return phase == ModelPhase.PREDICT

    @staticmethod
    def is_eval(phase):
        return phase == ModelPhase.EVAL

    @staticmethod
    def is_visual(phase):
        return phase == ModelPhase.VISUAL

    @staticmethod
    def is_valid_phase(phase):
        """ Check valid phase """
        if ModelPhase.is_train(phase) or ModelPhase.is_predict(phase) \
                or ModelPhase.is_eval(phase) or ModelPhase.is_visual(phase):
            return True

        return False


W
wuyefeilin 已提交
74 75 76 77 78 79 80 81 82 83 84 85
def seg_model(image, class_num):
    model_name = cfg.MODEL.MODEL_NAME
    if model_name == 'unet':
        logits = unet.unet(image, class_num)
    elif model_name == 'deeplabv3p':
        logits = deeplab.deeplabv3p(image, class_num)
    elif model_name == 'icnet':
        logits = icnet.icnet(image, class_num)
    elif model_name == 'pspnet':
        logits = pspnet.pspnet(image, class_num)
    elif model_name == 'hrnet':
        logits = hrnet.hrnet(image, class_num)
L
LielinJiang 已提交
86 87
    elif model_name == 'fast_scnn':
        logits = fast_scnn.fast_scnn(image, class_num)
W
wuzewu 已提交
88 89
    else:
        raise Exception(
L
LielinJiang 已提交
90
            "unknow model name, only support unet, deeplabv3p, icnet, pspnet, hrnet, fast_scnn"
W
wuyefeilin 已提交
91 92
        )
    return logits
W
wuzewu 已提交
93 94 95 96 97 98 99 100


def softmax(logit):
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.softmax(logit)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuyefeilin 已提交
101

W
wuyefeilin 已提交
102 103 104 105 106 107 108 109 110 111 112
def sigmoid_to_softmax(logit):
    """
    one channel to two channel
    """
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit_back = 1 - logit
    logit = fluid.layers.concat([logit_back, logit], axis=-1)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuzewu 已提交
113 114 115 116 117 118 119 120 121 122 123

def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
    if not ModelPhase.is_valid_phase(phase):
        raise ValueError("ModelPhase {} is not valid!".format(phase))
    if ModelPhase.is_train(phase):
        width = cfg.TRAIN_CROP_SIZE[0]
        height = cfg.TRAIN_CROP_SIZE[1]
    else:
        width = cfg.EVAL_CROP_SIZE[0]
        height = cfg.EVAL_CROP_SIZE[1]

124 125
    image_shape = [-1, cfg.DATASET.DATA_DIM, height, width]
    grt_shape = [-1, 1, height, width]
W
wuzewu 已提交
126 127 128 129
    class_num = cfg.DATASET.NUM_CLASSES

    with fluid.program_guard(main_prog, start_prog):
        with fluid.unique_name.guard():
130 131
            # 在导出模型的时候,增加图像标准化预处理,减小预测部署时图像的处理流程
            # 预测部署时只须对输入图像增加batch_size维度即可
132
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
133 134
            label = fluid.data(name='label', shape=grt_shape, dtype='int32')
            mask = fluid.data(name='mask', shape=grt_shape, dtype='int32')
W
wuzewu 已提交
135

136
            # use DataLoader when doing traning and evaluation
W
wuzewu 已提交
137
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
138
                data_loader = fluid.io.DataLoader.from_generator(
W
wuzewu 已提交
139 140 141 142
                    feed_list=[image, label, mask],
                    capacity=cfg.DATALOADER.BUF_SIZE,
                    iterable=False,
                    use_double_buffer=True)
143

W
wuyefeilin 已提交
144
            loss_type = cfg.SOLVER.LOSS
145 146
            if not isinstance(loss_type, list):
                loss_type = list(loss_type)
147

148 149 150
            # lovasz_hinge_loss或dice_loss或bce_loss只适用两类分割中
            if class_num > 2 and (("lovasz_hinge_loss" in loss_type) or
                                  ("dice_loss" in loss_type) or
W
wuyefeilin 已提交
151 152
                                  ("bce_loss" in loss_type)):
                raise Exception(
153
                    "lovasz hinge loss, dice loss and bce loss are only applicable to binary classfication."
W
wuyefeilin 已提交
154 155
                )

156 157 158
            # 在两类分割情况下,当loss函数选择lovasz_hinge_loss或dice_loss或bce_loss的时候,最后logit输出通道数设置为1
            if ("dice_loss" in loss_type) or ("bce_loss" in loss_type) or (
                    "lovasz_hinge_loss" in loss_type):
W
wuyefeilin 已提交
159
                class_num = 1
160 161
                if ("softmax_loss" in loss_type) or (
                        "lovasz_softmax_loss" in loss_type):
W
wuyefeilin 已提交
162
                    raise Exception(
163
                        "softmax loss or lovasz softmax loss can not combine with bce loss or dice loss or lovasz hinge loss."
W
wuyefeilin 已提交
164
                    )
W
wuyefeilin 已提交
165
            cfg.PHASE = phase
W
wuyefeilin 已提交
166
            logits = seg_model(image, class_num)
W
wuzewu 已提交
167

168
            # 根据选择的loss函数计算相应的损失函数
W
wuzewu 已提交
169
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
W
wuyefeilin 已提交
170 171
                loss_valid = False
                avg_loss_list = []
172
                valid_loss = []
L
LielinJiang 已提交
173 174
                if "softmax_loss" in loss_type:
                    weight = cfg.SOLVER.CROSS_ENTROPY_WEIGHT
W
wuyefeilin 已提交
175
                    avg_loss_list.append(
176 177
                        multi_softmax_with_loss(logits, label, mask, class_num,
                                                weight))
W
wuyefeilin 已提交
178
                    loss_valid = True
179
                    valid_loss.append("softmax_loss")
W
wuyefeilin 已提交
180 181 182
                if "dice_loss" in loss_type:
                    avg_loss_list.append(multi_dice_loss(logits, label, mask))
                    loss_valid = True
183
                    valid_loss.append("dice_loss")
W
wuyefeilin 已提交
184 185 186
                if "bce_loss" in loss_type:
                    avg_loss_list.append(multi_bce_loss(logits, label, mask))
                    loss_valid = True
187
                    valid_loss.append("bce_loss")
188 189 190 191 192 193 194 195 196 197 198
                if "lovasz_hinge_loss" in loss_type:
                    avg_loss_list.append(
                        lovasz_hinge(logits, label, ignore=mask))
                    loss_valid = True
                    valid_loss.append("lovasz_hinge_loss")
                if "lovasz_softmax_loss" in loss_type:
                    probas = fluid.layers.softmax(logits, axis=1)
                    avg_loss_list.append(
                        lovasz_softmax(probas, label, ignore=mask))
                    loss_valid = True
                    valid_loss.append("lovasz_softmax_loss")
W
wuyefeilin 已提交
199
                if not loss_valid:
W
wuyefeilin 已提交
200 201
                    raise Exception(
                        "SOLVER.LOSS: {} is set wrong. it should "
202 203
                        "include one of (softmax_loss, bce_loss, dice_loss, lovasz_hinge_loss, lovasz_softmax_loss) at least"
                        " example: ['softmax_loss'], ['dice_loss'], ['bce_loss', 'dice_loss'], ['lovasz_hinge_loss','bce_loss'], ['lovasz_softmax_loss','softmax_loss']"
W
wuyefeilin 已提交
204 205
                        .format(cfg.SOLVER.LOSS))

206 207
                invalid_loss = [x for x in loss_type if x not in valid_loss]
                if len(invalid_loss) > 0:
W
wuyefeilin 已提交
208 209 210
                    print(
                        "Warning: the loss {} you set is invalid. it will not be included in loss computed."
                        .format(invalid_loss))
211

W
wuyefeilin 已提交
212 213
                avg_loss = 0
                for i in range(0, len(avg_loss_list)):
214 215 216
                    loss_name = valid_loss[i].upper()
                    loss_weight = eval('cfg.SOLVER.LOSS_WEIGHT.' + loss_name)
                    avg_loss += loss_weight * avg_loss_list[i]
W
wuzewu 已提交
217 218 219 220 221 222 223 224 225 226 227 228

            #get pred result in original size
            if isinstance(logits, tuple):
                logit = logits[0]
            else:
                logit = logits

            if logit.shape[2:] != label.shape[2:]:
                logit = fluid.layers.resize_bilinear(logit, label.shape[2:])

            # return image input and logit output for inference graph prune
            if ModelPhase.is_predict(phase):
229
                # 两类分割中,使用lovasz_hinge_loss或dice_loss或bce_loss返回的logit为单通道,进行到两通道的变换
W
wuyefeilin 已提交
230 231 232 233
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
234

235
                return image, logit
236

W
wuyefeilin 已提交
237 238 239 240 241
            if class_num == 1:
                out = sigmoid_to_softmax(logit)
                out = fluid.layers.transpose(out, [0, 2, 3, 1])
            else:
                out = fluid.layers.transpose(logit, [0, 2, 3, 1])
242

W
wuzewu 已提交
243 244 245
            pred = fluid.layers.argmax(out, axis=3)
            pred = fluid.layers.unsqueeze(pred, axes=[3])
            if ModelPhase.is_visual(phase):
W
wuyefeilin 已提交
246 247 248 249
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
W
wuzewu 已提交
250 251 252
                return pred, logit

            if ModelPhase.is_eval(phase):
253
                return data_loader, avg_loss, pred, label, mask
W
wuzewu 已提交
254 255 256 257

            if ModelPhase.is_train(phase):
                optimizer = solver.Solver(main_prog, start_prog)
                decayed_lr = optimizer.optimise(avg_loss)
258
                return data_loader, avg_loss, decayed_lr, pred, label, mask
W
wuzewu 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276


def to_int(string, dest="I"):
    return struct.unpack(dest, string)[0]


def parse_shape_from_file(filename):
    with open(filename, "rb") as file:
        version = file.read(4)
        lod_level = to_int(file.read(8), dest="Q")
        for i in range(lod_level):
            _size = to_int(file.read(8), dest="Q")
            _ = file.read(_size)
        version = file.read(4)
        tensor_desc_size = to_int(file.read(4))
        tensor_desc = VarType.TensorDesc()
        tensor_desc.ParseFromString(file.read(tensor_desc_size))
    return tuple(tensor_desc.dims)