model_builder.py 10.8 KB
Newer Older
W
wuzewu 已提交
1
# coding: utf8
W
wuyefeilin 已提交
2
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
W
wuzewu 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import struct

import paddle.fluid as fluid
import numpy as np
from paddle.fluid.proto.framework_pb2 import VarType

import solver
from utils.config import cfg
from loss import multi_softmax_with_loss
W
wuyefeilin 已提交
25 26
from loss import multi_dice_loss
from loss import multi_bce_loss
27 28
from lovasz_losses import lovasz_hinge
from lovasz_losses import lovasz_softmax
T
tianlanshidai 已提交
29
from models.modeling import deeplab, unet, icnet, pspnet, hrnet, fast_scnn,ocnet
W
wuzewu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


class ModelPhase(object):
    """
    Standard name for model phase in PaddleSeg

    The following standard keys are defined:
    * `TRAIN`: training mode.
    * `EVAL`: testing/evaluation mode.
    * `PREDICT`: prediction/inference mode.
    * `VISUAL` : visualization mode
    """

    TRAIN = 'train'
    EVAL = 'eval'
    PREDICT = 'predict'
    VISUAL = 'visual'

    @staticmethod
    def is_train(phase):
        return phase == ModelPhase.TRAIN

    @staticmethod
    def is_predict(phase):
        return phase == ModelPhase.PREDICT

    @staticmethod
    def is_eval(phase):
        return phase == ModelPhase.EVAL

    @staticmethod
    def is_visual(phase):
        return phase == ModelPhase.VISUAL

    @staticmethod
    def is_valid_phase(phase):
        """ Check valid phase """
        if ModelPhase.is_train(phase) or ModelPhase.is_predict(phase) \
                or ModelPhase.is_eval(phase) or ModelPhase.is_visual(phase):
            return True

        return False


W
wuyefeilin 已提交
74 75 76 77 78 79 80 81 82 83 84 85
def seg_model(image, class_num):
    model_name = cfg.MODEL.MODEL_NAME
    if model_name == 'unet':
        logits = unet.unet(image, class_num)
    elif model_name == 'deeplabv3p':
        logits = deeplab.deeplabv3p(image, class_num)
    elif model_name == 'icnet':
        logits = icnet.icnet(image, class_num)
    elif model_name == 'pspnet':
        logits = pspnet.pspnet(image, class_num)
    elif model_name == 'hrnet':
        logits = hrnet.hrnet(image, class_num)
L
LielinJiang 已提交
86 87
    elif model_name == 'fast_scnn':
        logits = fast_scnn.fast_scnn(image, class_num)
T
tianlanshidai 已提交
88 89
    elif model_name == 'ocnet':
        logits = ocnet.ocnet(image, class_num)
W
wuzewu 已提交
90 91
    else:
        raise Exception(
L
LielinJiang 已提交
92
            "unknow model name, only support unet, deeplabv3p, icnet, pspnet, hrnet, fast_scnn"
W
wuyefeilin 已提交
93 94
        )
    return logits
W
wuzewu 已提交
95 96 97 98 99 100 101 102


def softmax(logit):
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.softmax(logit)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuyefeilin 已提交
103

W
wuyefeilin 已提交
104 105 106 107 108 109 110 111 112 113 114
def sigmoid_to_softmax(logit):
    """
    one channel to two channel
    """
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit_back = 1 - logit
    logit = fluid.layers.concat([logit_back, logit], axis=-1)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuzewu 已提交
115 116 117 118 119 120 121 122 123 124 125

def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
    if not ModelPhase.is_valid_phase(phase):
        raise ValueError("ModelPhase {} is not valid!".format(phase))
    if ModelPhase.is_train(phase):
        width = cfg.TRAIN_CROP_SIZE[0]
        height = cfg.TRAIN_CROP_SIZE[1]
    else:
        width = cfg.EVAL_CROP_SIZE[0]
        height = cfg.EVAL_CROP_SIZE[1]

126 127
    image_shape = [-1, cfg.DATASET.DATA_DIM, height, width]
    grt_shape = [-1, 1, height, width]
W
wuzewu 已提交
128 129 130 131
    class_num = cfg.DATASET.NUM_CLASSES

    with fluid.program_guard(main_prog, start_prog):
        with fluid.unique_name.guard():
132 133
            # 在导出模型的时候,增加图像标准化预处理,减小预测部署时图像的处理流程
            # 预测部署时只须对输入图像增加batch_size维度即可
134
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
135 136
            label = fluid.data(name='label', shape=grt_shape, dtype='int32')
            mask = fluid.data(name='mask', shape=grt_shape, dtype='int32')
W
wuzewu 已提交
137

138
            # use DataLoader when doing traning and evaluation
W
wuzewu 已提交
139
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
140
                data_loader = fluid.io.DataLoader.from_generator(
W
wuzewu 已提交
141 142 143 144
                    feed_list=[image, label, mask],
                    capacity=cfg.DATALOADER.BUF_SIZE,
                    iterable=False,
                    use_double_buffer=True)
145

W
wuyefeilin 已提交
146
            loss_type = cfg.SOLVER.LOSS
147 148
            if not isinstance(loss_type, list):
                loss_type = list(loss_type)
149

150 151 152
            # lovasz_hinge_loss或dice_loss或bce_loss只适用两类分割中
            if class_num > 2 and (("lovasz_hinge_loss" in loss_type) or
                                  ("dice_loss" in loss_type) or
W
wuyefeilin 已提交
153 154
                                  ("bce_loss" in loss_type)):
                raise Exception(
155
                    "lovasz hinge loss, dice loss and bce loss are only applicable to binary classfication."
W
wuyefeilin 已提交
156 157
                )

158 159 160
            # 在两类分割情况下,当loss函数选择lovasz_hinge_loss或dice_loss或bce_loss的时候,最后logit输出通道数设置为1
            if ("dice_loss" in loss_type) or ("bce_loss" in loss_type) or (
                    "lovasz_hinge_loss" in loss_type):
W
wuyefeilin 已提交
161
                class_num = 1
162 163
                if ("softmax_loss" in loss_type) or (
                        "lovasz_softmax_loss" in loss_type):
W
wuyefeilin 已提交
164
                    raise Exception(
165
                        "softmax loss or lovasz softmax loss can not combine with bce loss or dice loss or lovasz hinge loss."
W
wuyefeilin 已提交
166
                    )
W
wuyefeilin 已提交
167
            cfg.PHASE = phase
W
wuyefeilin 已提交
168
            logits = seg_model(image, class_num)
W
wuzewu 已提交
169

170
            # 根据选择的loss函数计算相应的损失函数
W
wuzewu 已提交
171
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
W
wuyefeilin 已提交
172 173
                loss_valid = False
                avg_loss_list = []
174
                valid_loss = []
L
LielinJiang 已提交
175 176
                if "softmax_loss" in loss_type:
                    weight = cfg.SOLVER.CROSS_ENTROPY_WEIGHT
W
wuyefeilin 已提交
177
                    avg_loss_list.append(
178 179
                        multi_softmax_with_loss(logits, label, mask, class_num,
                                                weight))
W
wuyefeilin 已提交
180
                    loss_valid = True
181
                    valid_loss.append("softmax_loss")
W
wuyefeilin 已提交
182 183 184
                if "dice_loss" in loss_type:
                    avg_loss_list.append(multi_dice_loss(logits, label, mask))
                    loss_valid = True
185
                    valid_loss.append("dice_loss")
W
wuyefeilin 已提交
186 187 188
                if "bce_loss" in loss_type:
                    avg_loss_list.append(multi_bce_loss(logits, label, mask))
                    loss_valid = True
189
                    valid_loss.append("bce_loss")
190 191 192 193 194 195 196 197 198 199 200
                if "lovasz_hinge_loss" in loss_type:
                    avg_loss_list.append(
                        lovasz_hinge(logits, label, ignore=mask))
                    loss_valid = True
                    valid_loss.append("lovasz_hinge_loss")
                if "lovasz_softmax_loss" in loss_type:
                    probas = fluid.layers.softmax(logits, axis=1)
                    avg_loss_list.append(
                        lovasz_softmax(probas, label, ignore=mask))
                    loss_valid = True
                    valid_loss.append("lovasz_softmax_loss")
W
wuyefeilin 已提交
201
                if not loss_valid:
W
wuyefeilin 已提交
202 203
                    raise Exception(
                        "SOLVER.LOSS: {} is set wrong. it should "
204 205
                        "include one of (softmax_loss, bce_loss, dice_loss, lovasz_hinge_loss, lovasz_softmax_loss) at least"
                        " example: ['softmax_loss'], ['dice_loss'], ['bce_loss', 'dice_loss'], ['lovasz_hinge_loss','bce_loss'], ['lovasz_softmax_loss','softmax_loss']"
W
wuyefeilin 已提交
206 207
                        .format(cfg.SOLVER.LOSS))

208 209
                invalid_loss = [x for x in loss_type if x not in valid_loss]
                if len(invalid_loss) > 0:
W
wuyefeilin 已提交
210 211 212
                    print(
                        "Warning: the loss {} you set is invalid. it will not be included in loss computed."
                        .format(invalid_loss))
213

W
wuyefeilin 已提交
214 215
                avg_loss = 0
                for i in range(0, len(avg_loss_list)):
216 217 218
                    loss_name = valid_loss[i].upper()
                    loss_weight = eval('cfg.SOLVER.LOSS_WEIGHT.' + loss_name)
                    avg_loss += loss_weight * avg_loss_list[i]
W
wuzewu 已提交
219 220 221 222 223 224 225 226 227 228 229 230

            #get pred result in original size
            if isinstance(logits, tuple):
                logit = logits[0]
            else:
                logit = logits

            if logit.shape[2:] != label.shape[2:]:
                logit = fluid.layers.resize_bilinear(logit, label.shape[2:])

            # return image input and logit output for inference graph prune
            if ModelPhase.is_predict(phase):
231
                # 两类分割中,使用lovasz_hinge_loss或dice_loss或bce_loss返回的logit为单通道,进行到两通道的变换
W
wuyefeilin 已提交
232 233 234 235
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
236

237
                return image, logit
238

W
wuyefeilin 已提交
239 240 241 242 243
            if class_num == 1:
                out = sigmoid_to_softmax(logit)
                out = fluid.layers.transpose(out, [0, 2, 3, 1])
            else:
                out = fluid.layers.transpose(logit, [0, 2, 3, 1])
244

W
wuzewu 已提交
245 246 247
            pred = fluid.layers.argmax(out, axis=3)
            pred = fluid.layers.unsqueeze(pred, axes=[3])
            if ModelPhase.is_visual(phase):
W
wuyefeilin 已提交
248 249 250 251
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
W
wuzewu 已提交
252 253 254
                return pred, logit

            if ModelPhase.is_eval(phase):
255
                return data_loader, avg_loss, pred, label, mask
W
wuzewu 已提交
256 257 258 259

            if ModelPhase.is_train(phase):
                optimizer = solver.Solver(main_prog, start_prog)
                decayed_lr = optimizer.optimise(avg_loss)
260
                return data_loader, avg_loss, decayed_lr, pred, label, mask
W
wuzewu 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278


def to_int(string, dest="I"):
    return struct.unpack(dest, string)[0]


def parse_shape_from_file(filename):
    with open(filename, "rb") as file:
        version = file.read(4)
        lod_level = to_int(file.read(8), dest="Q")
        for i in range(lod_level):
            _size = to_int(file.read(8), dest="Q")
            _ = file.read(_size)
        version = file.read(4)
        tensor_desc_size = to_int(file.read(4))
        tensor_desc = VarType.TensorDesc()
        tensor_desc.ParseFromString(file.read(tensor_desc_size))
    return tuple(tensor_desc.dims)