model_builder.py 12.1 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import struct

import paddle.fluid as fluid
import numpy as np
from paddle.fluid.proto.framework_pb2 import VarType

import solver
from utils.config import cfg
from loss import multi_softmax_with_loss
W
wuyefeilin 已提交
25 26
from loss import multi_dice_loss
from loss import multi_bce_loss
L
LielinJiang 已提交
27
from models.modeling import deeplab, unet, icnet, pspnet, hrnet, fast_scnn
W
wuzewu 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71


class ModelPhase(object):
    """
    Standard name for model phase in PaddleSeg

    The following standard keys are defined:
    * `TRAIN`: training mode.
    * `EVAL`: testing/evaluation mode.
    * `PREDICT`: prediction/inference mode.
    * `VISUAL` : visualization mode
    """

    TRAIN = 'train'
    EVAL = 'eval'
    PREDICT = 'predict'
    VISUAL = 'visual'

    @staticmethod
    def is_train(phase):
        return phase == ModelPhase.TRAIN

    @staticmethod
    def is_predict(phase):
        return phase == ModelPhase.PREDICT

    @staticmethod
    def is_eval(phase):
        return phase == ModelPhase.EVAL

    @staticmethod
    def is_visual(phase):
        return phase == ModelPhase.VISUAL

    @staticmethod
    def is_valid_phase(phase):
        """ Check valid phase """
        if ModelPhase.is_train(phase) or ModelPhase.is_predict(phase) \
                or ModelPhase.is_eval(phase) or ModelPhase.is_visual(phase):
            return True

        return False


W
wuyefeilin 已提交
72 73 74 75 76 77 78 79 80 81 82 83
def seg_model(image, class_num):
    model_name = cfg.MODEL.MODEL_NAME
    if model_name == 'unet':
        logits = unet.unet(image, class_num)
    elif model_name == 'deeplabv3p':
        logits = deeplab.deeplabv3p(image, class_num)
    elif model_name == 'icnet':
        logits = icnet.icnet(image, class_num)
    elif model_name == 'pspnet':
        logits = pspnet.pspnet(image, class_num)
    elif model_name == 'hrnet':
        logits = hrnet.hrnet(image, class_num)
L
LielinJiang 已提交
84 85
    elif model_name == 'fast_scnn':
        logits = fast_scnn.fast_scnn(image, class_num)
W
wuzewu 已提交
86 87
    else:
        raise Exception(
W
wuyefeilin 已提交
88 89 90
            "unknow model name, only support unet, deeplabv3p, icnet, pspnet, hrnet"
        )
    return logits
W
wuzewu 已提交
91 92 93 94 95 96 97 98


def softmax(logit):
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.softmax(logit)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuyefeilin 已提交
99

W
wuyefeilin 已提交
100 101 102 103 104 105 106 107 108 109 110
def sigmoid_to_softmax(logit):
    """
    one channel to two channel
    """
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit_back = 1 - logit
    logit = fluid.layers.concat([logit_back, logit], axis=-1)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuzewu 已提交
111

112 113 114 115 116 117 118 119 120 121 122
def export_preprocess(image):
    """导出模型的预处理流程"""

    image = fluid.layers.transpose(image, [0, 3, 1, 2])
    origin_shape = fluid.layers.shape(image)[-2:]

    # 不同AUG_METHOD方法的resize
    if cfg.AUG.AUG_METHOD == 'unpadding':
        h_fix = cfg.AUG.FIX_RESIZE_SIZE[1]
        w_fix = cfg.AUG.FIX_RESIZE_SIZE[0]
        image = fluid.layers.resize_bilinear(
W
wuyefeilin 已提交
123
            image, out_shape=[h_fix, w_fix], align_corners=False, align_mode=0)
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    elif cfg.AUG.AUG_METHOD == 'rangescaling':
        size = cfg.AUG.INF_RESIZE_VALUE
        value = fluid.layers.reduce_max(origin_shape)
        scale = float(size) / value.astype('float32')
        image = fluid.layers.resize_bilinear(
            image, scale=scale, align_corners=False, align_mode=0)

    # 存储resize后图像shape
    valid_shape = fluid.layers.shape(image)[-2:]

    # padding到eval_crop_size大小
    width = cfg.EVAL_CROP_SIZE[0]
    height = cfg.EVAL_CROP_SIZE[1]
    pad_target = fluid.layers.assign(
        np.array([height, width]).astype('float32'))
    up = fluid.layers.assign(np.array([0]).astype('float32'))
    down = pad_target[0] - valid_shape[0]
    left = up
    right = pad_target[1] - valid_shape[1]
    paddings = fluid.layers.concat([up, down, left, right])
    paddings = fluid.layers.cast(paddings, 'int32')
W
wuyefeilin 已提交
145
    image = fluid.layers.pad2d(image, paddings=paddings, pad_value=127.5)
146 147 148 149 150 151 152 153 154 155 156 157

    # normalize
    mean = np.array(cfg.MEAN).reshape(1, len(cfg.MEAN), 1, 1)
    mean = fluid.layers.assign(mean.astype('float32'))
    std = np.array(cfg.STD).reshape(1, len(cfg.STD), 1, 1)
    std = fluid.layers.assign(std.astype('float32'))
    image = (image / 255 - mean) / std
    # 使后面的网络能通过类似image.shape获取特征图的shape
    image = fluid.layers.reshape(
        image, shape=[-1, cfg.DATASET.DATA_DIM, height, width])
    return image, valid_shape, origin_shape

W
wuzewu 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
    if not ModelPhase.is_valid_phase(phase):
        raise ValueError("ModelPhase {} is not valid!".format(phase))
    if ModelPhase.is_train(phase):
        width = cfg.TRAIN_CROP_SIZE[0]
        height = cfg.TRAIN_CROP_SIZE[1]
    else:
        width = cfg.EVAL_CROP_SIZE[0]
        height = cfg.EVAL_CROP_SIZE[1]

    image_shape = [cfg.DATASET.DATA_DIM, height, width]
    grt_shape = [1, height, width]
    class_num = cfg.DATASET.NUM_CLASSES

    with fluid.program_guard(main_prog, start_prog):
        with fluid.unique_name.guard():
175 176 177
            # 在导出模型的时候,增加图像标准化预处理,减小预测部署时图像的处理流程
            # 预测部署时只须对输入图像增加batch_size维度即可
            if ModelPhase.is_predict(phase):
W
wuyefeilin 已提交
178 179
                origin_image = fluid.layers.data(
                    name='image',
180
                    shape=[-1, -1, -1, cfg.DATASET.DATA_DIM],
W
wuyefeilin 已提交
181 182
                    dtype='float32',
                    append_batch_size=False)
W
wuyefeilin 已提交
183 184
                image, valid_shape, origin_shape = export_preprocess(
                    origin_image)
185

186 187 188
            else:
                image = fluid.layers.data(
                    name='image', shape=image_shape, dtype='float32')
W
wuzewu 已提交
189 190 191 192 193 194 195 196 197 198 199 200
            label = fluid.layers.data(
                name='label', shape=grt_shape, dtype='int32')
            mask = fluid.layers.data(
                name='mask', shape=grt_shape, dtype='int32')

            # use PyReader when doing traning and evaluation
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
                py_reader = fluid.io.PyReader(
                    feed_list=[image, label, mask],
                    capacity=cfg.DATALOADER.BUF_SIZE,
                    iterable=False,
                    use_double_buffer=True)
201

W
wuyefeilin 已提交
202
            loss_type = cfg.SOLVER.LOSS
203 204
            if not isinstance(loss_type, list):
                loss_type = list(loss_type)
205

206
            # dice_loss或bce_loss只适用两类分割中
W
wuyefeilin 已提交
207 208 209 210 211 212
            if class_num > 2 and (("dice_loss" in loss_type) or
                                  ("bce_loss" in loss_type)):
                raise Exception(
                    "dice loss and bce loss is only applicable to binary classfication"
                )

213
            # 在两类分割情况下,当loss函数选择dice_loss或bce_loss的时候,最后logit输出通道数设置为1
W
wuyefeilin 已提交
214 215 216
            if ("dice_loss" in loss_type) or ("bce_loss" in loss_type):
                class_num = 1
                if "softmax_loss" in loss_type:
W
wuyefeilin 已提交
217 218 219
                    raise Exception(
                        "softmax loss can not combine with dice loss or bce loss"
                    )
W
wuyefeilin 已提交
220
            logits = seg_model(image, class_num)
W
wuzewu 已提交
221

222
            # 根据选择的loss函数计算相应的损失函数
W
wuzewu 已提交
223
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
W
wuyefeilin 已提交
224 225
                loss_valid = False
                avg_loss_list = []
226
                valid_loss = []
L
LielinJiang 已提交
227 228
                if "softmax_loss" in loss_type:
                    weight = cfg.SOLVER.CROSS_ENTROPY_WEIGHT
W
wuyefeilin 已提交
229
                    avg_loss_list.append(
L
LielinJiang 已提交
230
                        multi_softmax_with_loss(logits, label, mask, class_num, weight))
W
wuyefeilin 已提交
231
                    loss_valid = True
232
                    valid_loss.append("softmax_loss")
W
wuyefeilin 已提交
233 234 235
                if "dice_loss" in loss_type:
                    avg_loss_list.append(multi_dice_loss(logits, label, mask))
                    loss_valid = True
236
                    valid_loss.append("dice_loss")
W
wuyefeilin 已提交
237 238 239
                if "bce_loss" in loss_type:
                    avg_loss_list.append(multi_bce_loss(logits, label, mask))
                    loss_valid = True
240
                    valid_loss.append("bce_loss")
W
wuyefeilin 已提交
241
                if not loss_valid:
W
wuyefeilin 已提交
242 243 244 245 246 247
                    raise Exception(
                        "SOLVER.LOSS: {} is set wrong. it should "
                        "include one of (softmax_loss, bce_loss, dice_loss) at least"
                        " example: ['softmax_loss'], ['dice_loss'], ['bce_loss', 'dice_loss']"
                        .format(cfg.SOLVER.LOSS))

248 249
                invalid_loss = [x for x in loss_type if x not in valid_loss]
                if len(invalid_loss) > 0:
W
wuyefeilin 已提交
250 251 252
                    print(
                        "Warning: the loss {} you set is invalid. it will not be included in loss computed."
                        .format(invalid_loss))
253

W
wuyefeilin 已提交
254 255 256
                avg_loss = 0
                for i in range(0, len(avg_loss_list)):
                    avg_loss += avg_loss_list[i]
W
wuzewu 已提交
257 258 259 260 261 262 263 264 265 266 267 268

            #get pred result in original size
            if isinstance(logits, tuple):
                logit = logits[0]
            else:
                logit = logits

            if logit.shape[2:] != label.shape[2:]:
                logit = fluid.layers.resize_bilinear(logit, label.shape[2:])

            # return image input and logit output for inference graph prune
            if ModelPhase.is_predict(phase):
269
                # 两类分割中,使用dice_loss或bce_loss返回的logit为单通道,进行到两通道的变换
W
wuyefeilin 已提交
270 271 272 273
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
274 275 276 277 278

                # 获取有效部分
                logit = fluid.layers.slice(
                    logit, axes=[2, 3], starts=[0, 0], ends=valid_shape)

W
wuyefeilin 已提交
279 280 281 282 283
                logit = fluid.layers.resize_bilinear(
                    logit,
                    out_shape=origin_shape,
                    align_corners=False,
                    align_mode=0)
284
                logit = fluid.layers.argmax(logit, axis=1)
285
                return origin_image, logit
286

W
wuyefeilin 已提交
287 288 289 290 291
            if class_num == 1:
                out = sigmoid_to_softmax(logit)
                out = fluid.layers.transpose(out, [0, 2, 3, 1])
            else:
                out = fluid.layers.transpose(logit, [0, 2, 3, 1])
292

W
wuzewu 已提交
293 294 295
            pred = fluid.layers.argmax(out, axis=3)
            pred = fluid.layers.unsqueeze(pred, axes=[3])
            if ModelPhase.is_visual(phase):
W
wuyefeilin 已提交
296 297 298 299
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
W
wuzewu 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
                return pred, logit

            if ModelPhase.is_eval(phase):
                return py_reader, avg_loss, pred, label, mask

            if ModelPhase.is_train(phase):
                optimizer = solver.Solver(main_prog, start_prog)
                decayed_lr = optimizer.optimise(avg_loss)
                return py_reader, avg_loss, decayed_lr, pred, label, mask


def to_int(string, dest="I"):
    return struct.unpack(dest, string)[0]


def parse_shape_from_file(filename):
    with open(filename, "rb") as file:
        version = file.read(4)
        lod_level = to_int(file.read(8), dest="Q")
        for i in range(lod_level):
            _size = to_int(file.read(8), dest="Q")
            _ = file.read(_size)
        version = file.read(4)
        tensor_desc_size = to_int(file.read(4))
        tensor_desc = VarType.TensorDesc()
        tensor_desc.ParseFromString(file.read(tensor_desc_size))
    return tuple(tensor_desc.dims)