predict_rec.py 24.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
T
Topdu 已提交
16
from PIL import Image
17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey 已提交
19
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
W
WenmuZhou 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read
L
LDOUBLEV 已提交
34

W
WenmuZhou 已提交
35 36
logger = get_logger()

L
LDOUBLEV 已提交
37 38 39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
42
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
43 44
        postprocess_params = {
            'name': 'CTCLabelDecode',
45
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
46
            "use_space_char": args.use_space_char
T
tink2123 已提交
47
        }
T
tink2123 已提交
48 49 50
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
51 52 53 54 55 56
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
57 58 59
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
60 61 62 63 64 65
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
66 67 68 69 70
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
71
            }
A
andyjpaddle 已提交
72 73 74 75 76 77
        elif self.rec_algorithm == "VisionLAN":
            postprocess_params = {
                'name': 'VLLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
78 79 80 81 82 83 84 85 86 87 88
        elif self.rec_algorithm == 'ViTSTR':
            postprocess_params = {
                'name': 'ViTSTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == 'ABINet':
            postprocess_params = {
                'name': 'ABINetLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
xuyang2233's avatar
xuyang2233 已提交
89
            }
xuyang2233's avatar
add pr  
xuyang2233 已提交
90 91
        elif self.rec_algorithm == "SPIN":
            postprocess_params = {
xuyang2233's avatar
xuyang2233 已提交
92
                'name': 'SPINLabelDecode',
xuyang2233's avatar
add pr  
xuyang2233 已提交
93 94 95
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
xuyang2233's avatar
xuyang2233 已提交
96 97 98 99 100 101 102
        elif self.rec_algorithm == "RobustScanner":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char,
                "rm_symbol": True
            }
103 104 105 106 107 108
        elif self.rec_algorithm == 'RFL':
            postprocess_params = {
                'name': 'RFLLabelDecode',
                "character_dict_path": None,
                "use_space_char": args.use_space_char
            }
109 110
        elif self.rec_algorithm == "PREN":
            postprocess_params = {'name': 'PRENLabelDecode'}
W
WenmuZhou 已提交
111
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
112
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
W
WenmuZhou 已提交
113
            utility.create_predictor(args, 'rec', logger)
T
tink2123 已提交
114
        self.benchmark = args.benchmark
T
tink2123 已提交
115
        self.use_onnx = args.use_onnx
T
tink2123 已提交
116 117 118
        if args.benchmark:
            import auto_log
            pid = os.getpid()
L
LDOUBLEV 已提交
119
            gpu_id = utility.get_infer_gpuid()
T
tink2123 已提交
120 121 122
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
T
tink2123 已提交
123
                batch_size=args.rec_batch_num,
T
tink2123 已提交
124
                data_shape="dynamic",
125
                save_path=None,  #args.save_log_path,
T
tink2123 已提交
126 127 128
                inference_config=self.config,
                pids=pid,
                process_name=None,
L
LDOUBLEV 已提交
129
                gpu_ids=gpu_id if args.use_gpu else None,
T
tink2123 已提交
130 131 132
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
T
tink2123 已提交
133
                warmup=0,
134
                logger=logger)
L
LDOUBLEV 已提交
135

136
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
137
        imgC, imgH, imgW = self.rec_image_shape
138
        if self.rec_algorithm == 'NRTR' or self.rec_algorithm == 'ViTSTR':
T
Topdu 已提交
139 140 141
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
142 143 144 145
            if self.rec_algorithm == 'ViTSTR':
                img = image_pil.resize([imgW, imgH], Image.BICUBIC)
            else:
                img = image_pil.resize([imgW, imgH], Image.ANTIALIAS)
T
Topdu 已提交
146 147 148
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
149 150 151 152 153
            if self.rec_algorithm == 'ViTSTR':
                norm_img = norm_img.astype(np.float32) / 255.
            else:
                norm_img = norm_img.astype(np.float32) / 128. - 1.
            return norm_img
154 155 156 157 158 159 160 161 162 163
        elif self.rec_algorithm == 'RFL':
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            resized_image = cv2.resize(
                img, (imgW, imgH), interpolation=cv2.INTER_CUBIC)
            resized_image = resized_image.astype('float32')
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
            resized_image -= 0.5
            resized_image /= 0.5
            return resized_image
T
Topdu 已提交
164

165
        assert imgC == img.shape[2]
A
andyjpaddle 已提交
166
        imgW = int((imgH * max_wh_ratio))
T
tink2123 已提交
167
        if self.use_onnx:
168 169 170 171
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

172
        h, w = img.shape[:2]
173 174 175 176 177
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
A
andyjpaddle 已提交
178 179 180 181
        if self.rec_algorithm == 'RARE':
            if resized_w > self.rec_image_shape[2]:
                resized_w = self.rec_image_shape[2]
            imgW = self.rec_image_shape[2]
T
tink2123 已提交
182
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
183 184 185 186 187 188 189
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im
T
tink2123 已提交
190

A
andyjpaddle 已提交
191 192 193 194 195 196 197 198 199 200
    def resize_norm_img_vl(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        img = img[:, :, ::-1]  # bgr2rgb
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        return resized_image

T
tink2123 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

T
Topdu 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

xuyang2233's avatar
add pr  
xuyang2233 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    def resize_norm_img_spin(self, img):
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # return padding_im
        img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
        img = np.array(img, np.float32)
        img = np.expand_dims(img, -1)
        img = img.transpose((2, 0, 1))
        mean = [127.5]
        std = [127.5]
        mean = np.array(mean, dtype=np.float32)
        std = np.array(std, dtype=np.float32)
        mean = np.float32(mean.reshape(1, -1))
        stdinv = 1 / np.float32(std.reshape(1, -1))
        img -= mean
        img *= stdinv
        return img
A
andyjpaddle 已提交
324

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    def resize_norm_img_svtr(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        return resized_image

    def resize_norm_img_abinet(self, img, image_shape):

        imgC, imgH, imgW = image_shape

        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image / 255.

        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        resized_image = (
            resized_image - mean[None, None, ...]) / std[None, None, ...]
        resized_image = resized_image.transpose((2, 0, 1))
        resized_image = resized_image.astype('float32')

        return resized_image

L
LDOUBLEV 已提交
354 355
    def __call__(self, img_list):
        img_num = len(img_list)
356
        # Calculate the aspect ratio of all text bars
357 358 359
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
360
        # Sorting can speed up the recognition process
361 362
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
363
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
364
        st = time.time()
T
tink2123 已提交
365 366
        if self.benchmark:
            self.autolog.times.start()
L
LDOUBLEV 已提交
367 368 369
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
X
xiaoting 已提交
370 371 372 373 374 375 376
            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = []
                gsrm_word_pos_list = []
                gsrm_slf_attn_bias1_list = []
                gsrm_slf_attn_bias2_list = []
            if self.rec_algorithm == "SAR":
                valid_ratios = []
A
andyjpaddle 已提交
377
            imgC, imgH, imgW = self.rec_image_shape[:3]
A
andyjpaddle 已提交
378 379
            max_wh_ratio = imgW / imgH
            # max_wh_ratio = 0
L
LDOUBLEV 已提交
380
            for ino in range(beg_img_no, end_img_no):
381
                h, w = img_list[indices[ino]].shape[0:2]
382 383 384
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
Topdu 已提交
385
                if self.rec_algorithm == "SAR":
T
Topdu 已提交
386 387 388 389 390 391
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
T
Topdu 已提交
392
                elif self.rec_algorithm == "SRN":
L
LDOUBLEV 已提交
393 394
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
T
tink2123 已提交
395 396 397 398 399
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
T
Topdu 已提交
400
                elif self.rec_algorithm == "SVTR":
T
tink2123 已提交
401 402
                    norm_img = self.resize_norm_img_svtr(img_list[indices[ino]],
                                                         self.rec_image_shape)
T
Topdu 已提交
403 404
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
405
                elif self.rec_algorithm in ["VisionLAN", "PREN"]:
A
andyjpaddle 已提交
406 407 408 409
                    norm_img = self.resize_norm_img_vl(img_list[indices[ino]],
                                                       self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
xuyang2233's avatar
add pr  
xuyang2233 已提交
410 411
                elif self.rec_algorithm == 'SPIN':
                    norm_img = self.resize_norm_img_spin(img_list[indices[ino]])
xuyang2233's avatar
xuyang2233 已提交
412 413
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
414 415 416 417
                elif self.rec_algorithm == "ABINet":
                    norm_img = self.resize_norm_img_abinet(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
T
Topdu 已提交
418
                    norm_img_batch.append(norm_img)
xuyang2233's avatar
xuyang2233 已提交
419 420
                elif self.rec_algorithm == "RobustScanner":
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
421 422 423
                        img_list[indices[ino]],
                        self.rec_image_shape,
                        width_downsample_ratio=0.25)
xuyang2233's avatar
xuyang2233 已提交
424 425 426 427 428 429 430 431 432
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
                    word_positions_list = []
                    word_positions = np.array(range(0, 40)).astype('int64')
                    word_positions = np.expand_dims(word_positions, axis=0)
                    word_positions_list.append(word_positions)
T
Topdu 已提交
433 434 435 436 437
                else:
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
L
LDOUBLEV 已提交
438 439
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
440 441
            if self.benchmark:
                self.autolog.times.stamp()
T
tink2123 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
T
tink2123 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = {"predict": outputs[2]}
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = {"predict": outputs[2]}
T
Topdu 已提交
478 479 480 481
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
A
andyjpaddle 已提交
482 483
                    np.array(
                        [valid_ratios], dtype=np.float32),
T
Topdu 已提交
484
                ]
T
tink2123 已提交
485 486 487 488 489 490
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
T
Topdu 已提交
491
                else:
T
tink2123 已提交
492 493 494 495
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
xuyang2233's avatar
xuyang2233 已提交
496 497 498 499 500 501 502 503 504 505 506 507
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = outputs[0]
            elif self.rec_algorithm == "RobustScanner":
                valid_ratios = np.concatenate(valid_ratios)
                word_positions_list = np.concatenate(word_positions_list)
508 509
                inputs = [norm_img_batch, valid_ratios, word_positions_list]

xuyang2233's avatar
xuyang2233 已提交
510 511 512 513 514 515 516 517 518 519 520
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
T
tink2123 已提交
521 522 523 524 525 526 527 528
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
T
Topdu 已提交
529
                    preds = outputs[0]
T
tink2123 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
            else:
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    if len(outputs) != 1:
                        preds = outputs
                    else:
                        preds = outputs[0]
W
WenmuZhou 已提交
550 551 552
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
T
tink2123 已提交
553 554
            if self.benchmark:
                self.autolog.times.end(stamp=True)
L
LDOUBLEV 已提交
555
        return rec_res, time.time() - st
L
LDOUBLEV 已提交
556 557


558
def main(args):
D
dyning 已提交
559
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
560 561 562
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
L
LDOUBLEV 已提交
563

T
tink2123 已提交
564 565
    logger.info(
        "In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
T
tink2123 已提交
566
        "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
T
tink2123 已提交
567
    )
568
    # warmup 2 times
L
LDOUBLEV 已提交
569
    if args.warmup:
T
tink2123 已提交
570
        img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8)
571
        for i in range(2):
L
LDOUBLEV 已提交
572
            res = text_recognizer([img] * int(args.rec_batch_num))
L
LDOUBLEV 已提交
573

L
LDOUBLEV 已提交
574
    for image_file in image_file_list:
575
        img, flag, _ = check_and_read(image_file)
L
LDOUBLEV 已提交
576 577
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
578 579 580 581 582
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
LDOUBLEV 已提交
583 584 585 586 587 588 589 590 591 592
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
T
tink2123 已提交
593 594
    if args.benchmark:
        text_recognizer.autolog.report()
595 596 597 598


if __name__ == "__main__":
    main(utility.parse_args())