predict_rec.py 11.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
W
WenmuZhou 已提交
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
W
WenmuZhou 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
34

W
WenmuZhou 已提交
35 36
logger = get_logger()

L
LDOUBLEV 已提交
37 38 39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
41
        self.character_type = args.rec_char_type
42
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
43
        self.rec_algorithm = args.rec_algorithm
44
        self.max_text_length = args.max_text_length
W
WenmuZhou 已提交
45 46
        postprocess_params = {
            'name': 'CTCLabelDecode',
T
tink2123 已提交
47
            "character_type": args.rec_char_type,
48
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
49
            "use_space_char": args.use_space_char
T
tink2123 已提交
50
        }
T
tink2123 已提交
51 52 53
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
54 55 56 57 58 59 60
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
61 62 63 64
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
65 66 67
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors = \
            utility.create_predictor(args, 'rec', logger)
L
LDOUBLEV 已提交
68

69
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
70
        imgC, imgH, imgW = self.rec_image_shape
71
        assert imgC == img.shape[2]
72
        if self.character_type == "ch":
T
tink2123 已提交
73
            imgW = int((32 * max_wh_ratio))
74
        h, w = img.shape[:2]
75 76 77 78 79
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
80
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
81 82 83 84 85 86 87 88
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

T
tink2123 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

L
LDOUBLEV 已提交
161 162
    def __call__(self, img_list):
        img_num = len(img_list)
163
        # Calculate the aspect ratio of all text bars
164 165 166
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
167
        # Sorting can speed up the recognition process
168 169 170 171
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
172
        batch_num = self.rec_batch_num
W
WenmuZhou 已提交
173
        elapse = 0
L
LDOUBLEV 已提交
174 175 176
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
177
            max_wh_ratio = 0
L
LDOUBLEV 已提交
178
            for ino in range(beg_img_no, end_img_no):
179 180
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
181 182 183
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
184 185 186 187 188 189
                if self.rec_algorithm != "SRN":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
190 191 192
                    norm_img = self.process_image_srn(img_list[indices[ino]],
                                                      self.rec_image_shape, 8,
                                                      self.max_text_length)
T
tink2123 已提交
193 194 195 196 197 198 199 200 201
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
L
LDOUBLEV 已提交
202 203
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

            if self.rec_algorithm == "SRN":
                starttime = time.time()
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = {"predict": outputs[2]}
            else:
                starttime = time.time()
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()

                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = outputs[0]
W
fix mem  
WenmuZhou 已提交
242
            self.predictor.try_shrink_memory()
W
WenmuZhou 已提交
243 244 245
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
246
            elapse += time.time() - starttime
W
WenmuZhou 已提交
247
        return rec_res, elapse
L
LDOUBLEV 已提交
248 249


250
def main(args):
D
dyning 已提交
251
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
252
    text_recognizer = TextRecognizer(args)
L
littletomatodonkey 已提交
253 254
    total_run_time = 0.0
    total_images_num = 0
L
LDOUBLEV 已提交
255 256
    valid_image_file_list = []
    img_list = []
L
littletomatodonkey 已提交
257
    for idx, image_file in enumerate(image_file_list):
L
LDOUBLEV 已提交
258 259 260
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
261 262 263 264 265
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
littletomatodonkey 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        if len(img_list) >= args.rec_batch_num or idx == len(
                image_file_list) - 1:
            try:
                rec_res, predict_time = text_recognizer(img_list)
                total_run_time += predict_time
            except:
                logger.info(traceback.format_exc())
                logger.info(
                    "ERROR!!!! \n"
                    "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
                    "If your model has tps module:  "
                    "TPS does not support variable shape.\n"
                    "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
                )
                exit()
            for ino in range(len(img_list)):
                logger.info("Predicts of {}:{}".format(valid_image_file_list[
                    ino], rec_res[ino]))
            total_images_num += len(valid_image_file_list)
            valid_image_file_list = []
            img_list = []
W
WenmuZhou 已提交
287
    logger.info("Total predict time for {} images, cost: {:.3f}".format(
L
littletomatodonkey 已提交
288
        total_images_num, total_run_time))
289 290 291 292


if __name__ == "__main__":
    main(utility.parse_args())