Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
3f5ffc32
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
大约 1 年 前同步成功
通知
1528
Star
32962
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3f5ffc32
编写于
11月 08, 2021
作者:
T
tink2123
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add paddle2onnx doc
上级
1c5d1aa4
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
317 addition
and
1281 deletion
+317
-1281
deploy/paddle2onnx/predict_cls.py
deploy/paddle2onnx/predict_cls.py
+0
-149
deploy/paddle2onnx/predict_det.py
deploy/paddle2onnx/predict_det.py
+0
-223
deploy/paddle2onnx/predict_rec.py
deploy/paddle2onnx/predict_rec.py
+0
-148
deploy/paddle2onnx/predict_system.py
deploy/paddle2onnx/predict_system.py
+0
-190
deploy/paddle2onnx/readme.md
deploy/paddle2onnx/readme.md
+68
-0
deploy/paddle2onnx/utility.py
deploy/paddle2onnx/utility.py
+0
-375
test_tipc/configs/ppocr_det_mobile_params.txt
test_tipc/configs/ppocr_det_mobile_params.txt
+1
-1
test_tipc/test_paddle2onnx.sh
test_tipc/test_paddle2onnx.sh
+2
-2
tools/infer/predict_cls.py
tools/infer/predict_cls.py
+11
-4
tools/infer/predict_det.py
tools/infer/predict_det.py
+20
-10
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+61
-37
tools/infer/utility.py
tools/infer/utility.py
+154
-142
未找到文件。
deploy/paddle2onnx/predict_cls.py
已删除
100644 → 0
浏览文件 @
1c5d1aa4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
cv2
import
copy
import
numpy
as
np
import
math
import
time
import
traceback
import
utility
from
ppocr.postprocess
import
build_post_process
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
logger
=
get_logger
()
class
TextClassifier
(
object
):
def
__init__
(
self
,
args
):
self
.
cls_image_shape
=
[
int
(
v
)
for
v
in
args
.
cls_image_shape
.
split
(
","
)]
self
.
cls_batch_num
=
args
.
cls_batch_num
self
.
cls_thresh
=
args
.
cls_thresh
postprocess_params
=
{
'name'
:
'ClsPostProcess'
,
"label_list"
:
args
.
label_list
,
}
self
.
postprocess_op
=
build_post_process
(
postprocess_params
)
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
=
\
utility
.
create_predictor
(
args
,
'cls'
,
logger
)
def
resize_norm_img
(
self
,
img
):
imgC
,
imgH
,
imgW
=
self
.
cls_image_shape
h
=
img
.
shape
[
0
]
w
=
img
.
shape
[
1
]
ratio
=
w
/
float
(
h
)
if
math
.
ceil
(
imgH
*
ratio
)
>
imgW
:
resized_w
=
imgW
else
:
resized_w
=
int
(
math
.
ceil
(
imgH
*
ratio
))
resized_image
=
cv2
.
resize
(
img
,
(
resized_w
,
imgH
))
resized_image
=
resized_image
.
astype
(
'float32'
)
if
self
.
cls_image_shape
[
0
]
==
1
:
resized_image
=
resized_image
/
255
resized_image
=
resized_image
[
np
.
newaxis
,
:]
else
:
resized_image
=
resized_image
.
transpose
((
2
,
0
,
1
))
/
255
resized_image
-=
0.5
resized_image
/=
0.5
padding_im
=
np
.
zeros
((
imgC
,
imgH
,
imgW
),
dtype
=
np
.
float32
)
padding_im
[:,
:,
0
:
resized_w
]
=
resized_image
return
padding_im
def
__call__
(
self
,
img_list
):
img_list
=
copy
.
deepcopy
(
img_list
)
img_num
=
len
(
img_list
)
# Calculate the aspect ratio of all text bars
width_list
=
[]
for
img
in
img_list
:
width_list
.
append
(
img
.
shape
[
1
]
/
float
(
img
.
shape
[
0
]))
# Sorting can speed up the cls process
indices
=
np
.
argsort
(
np
.
array
(
width_list
))
cls_res
=
[[
''
,
0.0
]]
*
img_num
batch_num
=
self
.
cls_batch_num
elapse
=
0
for
beg_img_no
in
range
(
0
,
img_num
,
batch_num
):
end_img_no
=
min
(
img_num
,
beg_img_no
+
batch_num
)
norm_img_batch
=
[]
max_wh_ratio
=
0
for
ino
in
range
(
beg_img_no
,
end_img_no
):
h
,
w
=
img_list
[
indices
[
ino
]].
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
for
ino
in
range
(
beg_img_no
,
end_img_no
):
norm_img
=
self
.
resize_norm_img
(
img_list
[
indices
[
ino
]])
norm_img
=
norm_img
[
np
.
newaxis
,
:]
norm_img_batch
.
append
(
norm_img
)
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
norm_img_batch
=
norm_img_batch
.
copy
()
starttime
=
time
.
time
()
input_dict
=
{}
input_dict
[
self
.
input_tensor
.
name
]
=
norm_img_batch
outputs
=
self
.
predictor
.
run
(
self
.
output_tensors
,
input_dict
)
prob_out
=
outputs
[
0
]
cls_result
=
self
.
postprocess_op
(
prob_out
)
elapse
+=
time
.
time
()
-
starttime
for
rno
in
range
(
len
(
cls_result
)):
label
,
score
=
cls_result
[
rno
]
cls_res
[
indices
[
beg_img_no
+
rno
]]
=
[
label
,
score
]
if
'180'
in
label
and
score
>
self
.
cls_thresh
:
img_list
[
indices
[
beg_img_no
+
rno
]]
=
cv2
.
rotate
(
img_list
[
indices
[
beg_img_no
+
rno
]],
1
)
return
img_list
,
cls_res
,
elapse
def
main
(
args
):
image_file_list
=
get_image_file_list
(
args
.
image_dir
)
text_classifier
=
TextClassifier
(
args
)
valid_image_file_list
=
[]
img_list
=
[]
for
image_file
in
image_file_list
:
img
,
flag
=
check_and_read_gif
(
image_file
)
if
not
flag
:
img
=
cv2
.
imread
(
image_file
)
if
img
is
None
:
logger
.
info
(
"error in loading image:{}"
.
format
(
image_file
))
continue
valid_image_file_list
.
append
(
image_file
)
img_list
.
append
(
img
)
try
:
img_list
,
cls_res
,
predict_time
=
text_classifier
(
img_list
)
except
:
logger
.
info
(
traceback
.
format_exc
())
logger
.
info
(
"ERROR!!!!
\n
"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq
\n
"
"If your model has tps module: "
"TPS does not support variable shape.
\n
"
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
exit
()
for
ino
in
range
(
len
(
img_list
)):
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
cls_res
[
ino
]))
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
len
(
img_list
),
predict_time
))
if
__name__
==
"__main__"
:
main
(
utility
.
parse_args
())
deploy/paddle2onnx/predict_det.py
已删除
100644 → 0
浏览文件 @
1c5d1aa4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
cv2
import
numpy
as
np
import
time
import
sys
import
utility
as
utility
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
from
ppocr.data
import
create_operators
,
transform
from
ppocr.postprocess
import
build_post_process
logger
=
get_logger
()
class
TextDetector
(
object
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
det_algorithm
=
args
.
det_algorithm
pre_process_list
=
[{
'DetResizeForTest'
:
{
'image_shape'
:
[
640
,
640
]
}
},
{
'NormalizeImage'
:
{
'std'
:
[
0.229
,
0.224
,
0.225
],
'mean'
:
[
0.485
,
0.456
,
0.406
],
'scale'
:
'1./255.'
,
'order'
:
'hwc'
}
},
{
'ToCHWImage'
:
None
},
{
'KeepKeys'
:
{
'keep_keys'
:
[
'image'
,
'shape'
]
}
}]
postprocess_params
=
{}
if
self
.
det_algorithm
==
"DB"
:
postprocess_params
[
'name'
]
=
'DBPostProcess'
postprocess_params
[
"thresh"
]
=
args
.
det_db_thresh
postprocess_params
[
"box_thresh"
]
=
args
.
det_db_box_thresh
postprocess_params
[
"max_candidates"
]
=
1000
postprocess_params
[
"unclip_ratio"
]
=
args
.
det_db_unclip_ratio
postprocess_params
[
"use_dilation"
]
=
True
elif
self
.
det_algorithm
==
"EAST"
:
postprocess_params
[
'name'
]
=
'EASTPostProcess'
postprocess_params
[
"score_thresh"
]
=
args
.
det_east_score_thresh
postprocess_params
[
"cover_thresh"
]
=
args
.
det_east_cover_thresh
postprocess_params
[
"nms_thresh"
]
=
args
.
det_east_nms_thresh
elif
self
.
det_algorithm
==
"SAST"
:
pre_process_list
[
0
]
=
{
'DetResizeForTest'
:
{
'resize_long'
:
args
.
det_limit_side_len
}
}
postprocess_params
[
'name'
]
=
'SASTPostProcess'
postprocess_params
[
"score_thresh"
]
=
args
.
det_sast_score_thresh
postprocess_params
[
"nms_thresh"
]
=
args
.
det_sast_nms_thresh
self
.
det_sast_polygon
=
args
.
det_sast_polygon
if
self
.
det_sast_polygon
:
postprocess_params
[
"sample_pts_num"
]
=
6
postprocess_params
[
"expand_scale"
]
=
1.2
postprocess_params
[
"shrink_ratio_of_width"
]
=
0.2
else
:
postprocess_params
[
"sample_pts_num"
]
=
2
postprocess_params
[
"expand_scale"
]
=
1.0
postprocess_params
[
"shrink_ratio_of_width"
]
=
0.3
else
:
logger
.
info
(
"unknown det_algorithm:{}"
.
format
(
self
.
det_algorithm
))
sys
.
exit
(
0
)
self
.
preprocess_op
=
create_operators
(
pre_process_list
)
self
.
postprocess_op
=
build_post_process
(
postprocess_params
)
print
()
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
=
utility
.
create_predictor
(
args
,
'det'
,
logger
)
# paddle.jit.load(args.det_model_dir)
# self.predictor.eval()
def
order_points_clockwise
(
self
,
pts
):
"""
reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
# sort the points based on their x-coordinates
"""
xSorted
=
pts
[
np
.
argsort
(
pts
[:,
0
]),
:]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost
=
xSorted
[:
2
,
:]
rightMost
=
xSorted
[
2
:,
:]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost
=
leftMost
[
np
.
argsort
(
leftMost
[:,
1
]),
:]
(
tl
,
bl
)
=
leftMost
rightMost
=
rightMost
[
np
.
argsort
(
rightMost
[:,
1
]),
:]
(
tr
,
br
)
=
rightMost
rect
=
np
.
array
([
tl
,
tr
,
br
,
bl
],
dtype
=
"float32"
)
return
rect
def
clip_det_res
(
self
,
points
,
img_height
,
img_width
):
for
pno
in
range
(
points
.
shape
[
0
]):
points
[
pno
,
0
]
=
int
(
min
(
max
(
points
[
pno
,
0
],
0
),
img_width
-
1
))
points
[
pno
,
1
]
=
int
(
min
(
max
(
points
[
pno
,
1
],
0
),
img_height
-
1
))
return
points
def
filter_tag_det_res
(
self
,
dt_boxes
,
image_shape
):
img_height
,
img_width
=
image_shape
[
0
:
2
]
dt_boxes_new
=
[]
for
box
in
dt_boxes
:
box
=
self
.
order_points_clockwise
(
box
)
box
=
self
.
clip_det_res
(
box
,
img_height
,
img_width
)
rect_width
=
int
(
np
.
linalg
.
norm
(
box
[
0
]
-
box
[
1
]))
rect_height
=
int
(
np
.
linalg
.
norm
(
box
[
0
]
-
box
[
3
]))
if
rect_width
<=
3
or
rect_height
<=
3
:
continue
dt_boxes_new
.
append
(
box
)
dt_boxes
=
np
.
array
(
dt_boxes_new
)
return
dt_boxes
def
filter_tag_det_res_only_clip
(
self
,
dt_boxes
,
image_shape
):
img_height
,
img_width
=
image_shape
[
0
:
2
]
dt_boxes_new
=
[]
for
box
in
dt_boxes
:
box
=
self
.
clip_det_res
(
box
,
img_height
,
img_width
)
dt_boxes_new
.
append
(
box
)
dt_boxes
=
np
.
array
(
dt_boxes_new
)
return
dt_boxes
def
__call__
(
self
,
img
):
ori_im
=
img
.
copy
()
data
=
{
'image'
:
img
}
data
=
transform
(
data
,
self
.
preprocess_op
)
img
,
shape_list
=
data
if
img
is
None
:
return
None
,
0
img
=
np
.
expand_dims
(
img
,
axis
=
0
)
shape_list
=
np
.
expand_dims
(
shape_list
,
axis
=
0
)
img
=
img
.
copy
()
starttime
=
time
.
time
()
input_dict
=
{}
input_dict
[
self
.
input_tensor
.
name
]
=
img
outputs
=
self
.
predictor
.
run
(
self
.
output_tensors
,
input_dict
)
preds
=
{}
if
self
.
det_algorithm
==
"EAST"
:
preds
[
'f_geo'
]
=
outputs
[
0
]
preds
[
'f_score'
]
=
outputs
[
1
]
elif
self
.
det_algorithm
==
'SAST'
:
preds
[
'f_border'
]
=
outputs
[
0
]
preds
[
'f_score'
]
=
outputs
[
1
]
preds
[
'f_tco'
]
=
outputs
[
2
]
preds
[
'f_tvo'
]
=
outputs
[
3
]
elif
self
.
det_algorithm
==
'DB'
:
preds
[
'maps'
]
=
outputs
[
0
]
else
:
raise
NotImplementedError
post_result
=
self
.
postprocess_op
(
preds
,
shape_list
)
dt_boxes
=
post_result
[
0
][
'points'
]
if
self
.
det_algorithm
==
"SAST"
and
self
.
det_sast_polygon
:
dt_boxes
=
self
.
filter_tag_det_res_only_clip
(
dt_boxes
,
ori_im
.
shape
)
else
:
dt_boxes
=
self
.
filter_tag_det_res
(
dt_boxes
,
ori_im
.
shape
)
elapse
=
time
.
time
()
-
starttime
return
dt_boxes
,
elapse
if
__name__
==
"__main__"
:
args
=
utility
.
parse_args
()
image_file_list
=
get_image_file_list
(
args
.
image_dir
)
text_detector
=
TextDetector
(
args
)
count
=
0
total_time
=
0
draw_img_save
=
"./inference_results"
if
not
os
.
path
.
exists
(
draw_img_save
):
os
.
makedirs
(
draw_img_save
)
for
image_file
in
image_file_list
:
img
,
flag
=
check_and_read_gif
(
image_file
)
if
not
flag
:
img
=
cv2
.
imread
(
image_file
)
if
img
is
None
:
logger
.
info
(
"error in loading image:{}"
.
format
(
image_file
))
continue
dt_boxes
,
elapse
=
text_detector
(
img
)
if
count
>
0
:
total_time
+=
elapse
count
+=
1
logger
.
info
(
"Predict time of {}: {}"
.
format
(
image_file
,
elapse
))
src_im
=
utility
.
draw_text_det_res
(
dt_boxes
,
image_file
)
img_name_pure
=
os
.
path
.
split
(
image_file
)[
-
1
]
img_path
=
os
.
path
.
join
(
draw_img_save
,
"det_res_{}"
.
format
(
img_name_pure
))
cv2
.
imwrite
(
img_path
,
src_im
)
logger
.
info
(
"The visualized image saved in {}"
.
format
(
img_path
))
if
count
>
1
:
logger
.
info
(
"Avg Time: {}"
.
format
(
total_time
/
(
count
-
1
)))
deploy/paddle2onnx/predict_rec.py
已删除
100644 → 0
浏览文件 @
1c5d1aa4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
cv2
import
numpy
as
np
import
math
import
time
import
traceback
import
utility
from
ppocr.postprocess
import
build_post_process
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
logger
=
get_logger
()
class
TextRecognizer
(
object
):
def
__init__
(
self
,
args
):
self
.
rec_image_shape
=
[
int
(
v
)
for
v
in
args
.
rec_image_shape
.
split
(
","
)]
self
.
character_type
=
args
.
rec_char_type
self
.
rec_batch_num
=
args
.
rec_batch_num
self
.
rec_algorithm
=
args
.
rec_algorithm
postprocess_params
=
{
'name'
:
'CTCLabelDecode'
,
"character_type"
:
args
.
rec_char_type
,
"character_dict_path"
:
args
.
rec_char_dict_path
,
"use_space_char"
:
args
.
use_space_char
}
self
.
postprocess_op
=
build_post_process
(
postprocess_params
)
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
=
\
utility
.
create_predictor
(
args
,
'rec'
,
logger
)
def
resize_norm_img
(
self
,
img
,
max_wh_ratio
):
imgC
,
imgH
,
imgW
=
self
.
rec_image_shape
assert
imgC
==
img
.
shape
[
2
]
# if self.character_type == "ch":
# imgW = int((32 * max_wh_ratio))
h
,
w
=
img
.
shape
[:
2
]
ratio
=
w
/
float
(
h
)
if
math
.
ceil
(
imgH
*
ratio
)
>
imgW
:
resized_w
=
imgW
else
:
resized_w
=
int
(
math
.
ceil
(
imgH
*
ratio
))
resized_image
=
cv2
.
resize
(
img
,
(
resized_w
,
imgH
))
resized_image
=
resized_image
.
astype
(
'float32'
)
resized_image
=
resized_image
.
transpose
((
2
,
0
,
1
))
/
255
resized_image
-=
0.5
resized_image
/=
0.5
padding_im
=
np
.
zeros
((
imgC
,
imgH
,
imgW
),
dtype
=
np
.
float32
)
padding_im
[:,
:,
0
:
resized_w
]
=
resized_image
return
padding_im
def
__call__
(
self
,
img_list
):
img_num
=
len
(
img_list
)
# Calculate the aspect ratio of all text bars
width_list
=
[]
for
img
in
img_list
:
width_list
.
append
(
img
.
shape
[
1
]
/
float
(
img
.
shape
[
0
]))
# Sorting can speed up the recognition process
indices
=
np
.
argsort
(
np
.
array
(
width_list
))
# rec_res = []
rec_res
=
[[
''
,
0.0
]]
*
img_num
batch_num
=
self
.
rec_batch_num
elapse
=
0
for
beg_img_no
in
range
(
0
,
img_num
,
batch_num
):
end_img_no
=
min
(
img_num
,
beg_img_no
+
batch_num
)
norm_img_batch
=
[]
max_wh_ratio
=
0
for
ino
in
range
(
beg_img_no
,
end_img_no
):
# h, w = img_list[ino].shape[0:2]
h
,
w
=
img_list
[
indices
[
ino
]].
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
for
ino
in
range
(
beg_img_no
,
end_img_no
):
# norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
norm_img
=
self
.
resize_norm_img
(
img_list
[
indices
[
ino
]],
max_wh_ratio
)
norm_img
=
norm_img
[
np
.
newaxis
,
:]
norm_img_batch
.
append
(
norm_img
)
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
norm_img_batch
=
norm_img_batch
.
copy
()
starttime
=
time
.
time
()
input_dict
=
{}
input_dict
[
self
.
input_tensor
.
name
]
=
norm_img_batch
outputs
=
self
.
predictor
.
run
(
self
.
output_tensors
,
input_dict
)
preds
=
outputs
[
0
]
rec_result
=
self
.
postprocess_op
(
preds
)
for
rno
in
range
(
len
(
rec_result
)):
rec_res
[
indices
[
beg_img_no
+
rno
]]
=
rec_result
[
rno
]
elapse
+=
time
.
time
()
-
starttime
return
rec_res
,
elapse
def
main
(
args
):
image_file_list
=
get_image_file_list
(
args
.
image_dir
)
text_recognizer
=
TextRecognizer
(
args
)
valid_image_file_list
=
[]
img_list
=
[]
for
image_file
in
image_file_list
:
img
,
flag
=
check_and_read_gif
(
image_file
)
if
not
flag
:
img
=
cv2
.
imread
(
image_file
)
if
img
is
None
:
logger
.
info
(
"error in loading image:{}"
.
format
(
image_file
))
continue
valid_image_file_list
.
append
(
image_file
)
img_list
.
append
(
img
)
try
:
rec_res
,
predict_time
=
text_recognizer
(
img_list
)
except
:
logger
.
info
(
traceback
.
format_exc
())
logger
.
info
(
"ERROR!!!!
\n
"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq
\n
"
"If your model has tps module: "
"TPS does not support variable shape.
\n
"
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
exit
()
for
ino
in
range
(
len
(
img_list
)):
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
rec_res
[
ino
]))
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
len
(
img_list
),
predict_time
))
if
__name__
==
"__main__"
:
main
(
utility
.
parse_args
())
deploy/paddle2onnx/predict_system.py
已删除
100644 → 0
浏览文件 @
1c5d1aa4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
cv2
import
copy
import
numpy
as
np
import
time
from
PIL
import
Image
import
utility
as
utility
import
predict_rec
as
predict_rec
import
predict_det
as
predict_det
import
predict_cls
as
predict_cls
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
from
ppocr.utils.logging
import
get_logger
from
utility
import
draw_ocr_box_txt
logger
=
get_logger
()
class
TextSystem
(
object
):
def
__init__
(
self
,
args
):
self
.
text_detector
=
predict_det
.
TextDetector
(
args
)
self
.
text_recognizer
=
predict_rec
.
TextRecognizer
(
args
)
self
.
use_angle_cls
=
args
.
use_angle_cls
self
.
drop_score
=
args
.
drop_score
if
self
.
use_angle_cls
:
self
.
text_classifier
=
predict_cls
.
TextClassifier
(
args
)
def
get_rotate_crop_image
(
self
,
img
,
points
):
'''
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
img_crop_width
=
int
(
max
(
np
.
linalg
.
norm
(
points
[
0
]
-
points
[
1
]),
np
.
linalg
.
norm
(
points
[
2
]
-
points
[
3
])))
img_crop_height
=
int
(
max
(
np
.
linalg
.
norm
(
points
[
0
]
-
points
[
3
]),
np
.
linalg
.
norm
(
points
[
1
]
-
points
[
2
])))
pts_std
=
np
.
float32
([[
0
,
0
],
[
img_crop_width
,
0
],
[
img_crop_width
,
img_crop_height
],
[
0
,
img_crop_height
]])
M
=
cv2
.
getPerspectiveTransform
(
points
,
pts_std
)
dst_img
=
cv2
.
warpPerspective
(
img
,
M
,
(
img_crop_width
,
img_crop_height
),
borderMode
=
cv2
.
BORDER_REPLICATE
,
flags
=
cv2
.
INTER_CUBIC
)
dst_img_height
,
dst_img_width
=
dst_img
.
shape
[
0
:
2
]
if
dst_img_height
*
1.0
/
dst_img_width
>=
1.5
:
dst_img
=
np
.
rot90
(
dst_img
)
return
dst_img
def
print_draw_crop_rec_res
(
self
,
img_crop_list
,
rec_res
):
bbox_num
=
len
(
img_crop_list
)
for
bno
in
range
(
bbox_num
):
cv2
.
imwrite
(
"./output/img_crop_%d.jpg"
%
bno
,
img_crop_list
[
bno
])
logger
.
info
(
bno
,
rec_res
[
bno
])
def
__call__
(
self
,
img
):
ori_im
=
img
.
copy
()
dt_boxes
,
elapse
=
self
.
text_detector
(
img
)
logger
.
info
(
"dt_boxes num : {}, elapse : {}"
.
format
(
len
(
dt_boxes
),
elapse
))
if
dt_boxes
is
None
:
return
None
,
None
img_crop_list
=
[]
dt_boxes
=
sorted_boxes
(
dt_boxes
)
for
bno
in
range
(
len
(
dt_boxes
)):
tmp_box
=
copy
.
deepcopy
(
dt_boxes
[
bno
])
img_crop
=
self
.
get_rotate_crop_image
(
ori_im
,
tmp_box
)
img_crop_list
.
append
(
img_crop
)
if
self
.
use_angle_cls
:
img_crop_list
,
angle_list
,
elapse
=
self
.
text_classifier
(
img_crop_list
)
logger
.
info
(
"cls num : {}, elapse : {}"
.
format
(
len
(
img_crop_list
),
elapse
))
rec_res
,
elapse
=
self
.
text_recognizer
(
img_crop_list
)
logger
.
info
(
"rec_res num : {}, elapse : {}"
.
format
(
len
(
rec_res
),
elapse
))
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
filter_boxes
,
filter_rec_res
=
[],
[]
for
box
,
rec_reuslt
in
zip
(
dt_boxes
,
rec_res
):
text
,
score
=
rec_reuslt
if
score
>=
self
.
drop_score
:
filter_boxes
.
append
(
box
)
filter_rec_res
.
append
(
rec_reuslt
)
return
filter_boxes
,
filter_rec_res
def
sorted_boxes
(
dt_boxes
):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes
=
dt_boxes
.
shape
[
0
]
sorted_boxes
=
sorted
(
dt_boxes
,
key
=
lambda
x
:
(
x
[
0
][
1
],
x
[
0
][
0
]))
_boxes
=
list
(
sorted_boxes
)
for
i
in
range
(
num_boxes
-
1
):
if
abs
(
_boxes
[
i
+
1
][
0
][
1
]
-
_boxes
[
i
][
0
][
1
])
<
10
and
\
(
_boxes
[
i
+
1
][
0
][
0
]
<
_boxes
[
i
][
0
][
0
]):
tmp
=
_boxes
[
i
]
_boxes
[
i
]
=
_boxes
[
i
+
1
]
_boxes
[
i
+
1
]
=
tmp
return
_boxes
def
main
(
args
):
image_file_list
=
get_image_file_list
(
args
.
image_dir
)
text_sys
=
TextSystem
(
args
)
is_visualize
=
True
font_path
=
args
.
vis_font_path
drop_score
=
args
.
drop_score
for
image_file
in
image_file_list
:
img
,
flag
=
check_and_read_gif
(
image_file
)
if
not
flag
:
img
=
cv2
.
imread
(
image_file
)
#img = utility.resize_img(img, 640)
#img = utility.padding_img(img, [640,640])
print
(
img
.
shape
)
if
img
is
None
:
logger
.
info
(
"error in loading image:{}"
.
format
(
image_file
))
continue
starttime
=
time
.
time
()
dt_boxes
,
rec_res
=
text_sys
(
img
)
elapse
=
time
.
time
()
-
starttime
logger
.
info
(
"Predict time of %s: %.3fs"
%
(
image_file
,
elapse
))
for
text
,
score
in
rec_res
:
logger
.
info
(
"{}, {:.3f}"
.
format
(
text
,
score
))
if
is_visualize
:
image
=
Image
.
fromarray
(
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
))
boxes
=
dt_boxes
txts
=
[
rec_res
[
i
][
0
]
for
i
in
range
(
len
(
rec_res
))]
scores
=
[
rec_res
[
i
][
1
]
for
i
in
range
(
len
(
rec_res
))]
draw_img
=
draw_ocr_box_txt
(
image
,
boxes
,
txts
,
scores
,
drop_score
=
drop_score
,
font_path
=
font_path
)
draw_img_save
=
"./results/"
if
not
os
.
path
.
exists
(
draw_img_save
):
os
.
makedirs
(
draw_img_save
)
cv2
.
imwrite
(
os
.
path
.
join
(
draw_img_save
,
os
.
path
.
basename
(
image_file
)),
draw_img
[:,
:,
::
-
1
])
logger
.
info
(
"The visualized image saved in {}"
.
format
(
os
.
path
.
join
(
draw_img_save
,
os
.
path
.
basename
(
image_file
))))
if
__name__
==
"__main__"
:
main
(
utility
.
parse_args
())
\ No newline at end of file
deploy/paddle2onnx/readme.md
0 → 100644
浏览文件 @
3f5ffc32
# paddle2onnx 模型转化与预测
本章节介绍 PaddleOCR 模型如何转化为 ONNX 模型,并基于 ONNX 引擎预测。
## 1. 环境准备
需要准备 Paddle2ONNX 模型转化环境,和 ONNX 模型预测环境
### Paddle2ONNX
paddle2onnx 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式,算子目前稳定支持导出 ONNX Opset 9~11,部分Paddle算子支持更低的ONNX Opset转换。
更多细节可参考
[
Paddle2ONNX
](
https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_zh.md
)
-
安装 Paddle2ONNX
```
python3.7 -m pip install paddle2onnx
```
-
安装 ONNX
```
# 建议安装 1.4.0 版本,可根据环境更换版本号
python3.7 -m pip install onnxruntime==1.4.0
```
-
Paddle 模型下载
有两种方式获取Paddle静态图模型:在
[
model_list
](
../../doc/doc_ch/models_list.md
)
中下载PaddleOCR提供的预测模型;
参考
[
模型导出说明
](
../../doc/doc_ch/inference.md#训练模型转inference模型
)
把训练好的权重转为 inference_model。
以 ppocr 检测模型为例:
```
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && cd ..
```
## 2. 模型转换
使用 Paddle2ONNX 将Paddle静态图模型转换为ONNX模型格式:
```
paddle2onnx --model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ \
--model_filename=inference.pdmodel \
--params_filename=inference.pdiparams \
--save_file=./inference/det_mobile_onnx/model.onnx \
--opset_version=10 \
--enable_onnx_checker=True
```
执行完毕后,ONNX模型会被保存在
`./inference/det_mobile_onnx/`
路径下
## 3. onnx 预测
以检测模型为例,使用onnx预测可执行如下命令:
```
python3.7 ../../tools/infer/predict_det.py --use_gpu=False --use_onnx=True \
--det_model_dir=./inference/det_mobile_onnx/model.onnx \
--image_dir=../../doc/imgs/1.jpg
```
执行命令后在终端会打印出预测的检测框坐标,并在
`./inference_results/`
下保存可视化结果。
```
root INFO: 1.jpg [[[291, 295], [334, 292], [348, 844], [305, 847]], [[344, 296], [379, 294], [387, 669], [353, 671]]]
The predict time of ../../doc/imgs/1.jpg: 0.06162881851196289
The visualized image saved in ./inference_results/det_res_1.jpg
```
*
注意:ONNX暂时不支持变长预测,因为需要将输入resize到固定输入,预测结果可能与直接使用Paddle预测有细微不同。
deploy/paddle2onnx/utility.py
已删除
100644 → 0
浏览文件 @
1c5d1aa4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
os
import
sys
import
cv2
import
numpy
as
np
import
json
from
PIL
import
Image
,
ImageDraw
,
ImageFont
import
math
import
onnxruntime
as
ort
def
parse_args
():
def
str2bool
(
v
):
return
v
.
lower
()
in
(
"true"
,
"t"
,
"1"
)
parser
=
argparse
.
ArgumentParser
()
# params for prediction engine
parser
.
add_argument
(
"--use_gpu"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--ir_optim"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--use_tensorrt"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_fp16"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--gpu_mem"
,
type
=
int
,
default
=
500
)
# params for text detector
parser
.
add_argument
(
"--image_dir"
,
type
=
str
)
parser
.
add_argument
(
"--det_algorithm"
,
type
=
str
,
default
=
'DB'
)
parser
.
add_argument
(
"--det_model_dir"
,
type
=
str
)
parser
.
add_argument
(
"--det_limit_side_len"
,
type
=
float
,
default
=
960
)
parser
.
add_argument
(
"--det_limit_type"
,
type
=
str
,
default
=
'max'
)
# DB parmas
parser
.
add_argument
(
"--det_db_thresh"
,
type
=
float
,
default
=
0.3
)
parser
.
add_argument
(
"--det_db_box_thresh"
,
type
=
float
,
default
=
0.5
)
parser
.
add_argument
(
"--det_db_unclip_ratio"
,
type
=
float
,
default
=
1.6
)
parser
.
add_argument
(
"--max_batch_size"
,
type
=
int
,
default
=
10
)
# EAST parmas
parser
.
add_argument
(
"--det_east_score_thresh"
,
type
=
float
,
default
=
0.8
)
parser
.
add_argument
(
"--det_east_cover_thresh"
,
type
=
float
,
default
=
0.1
)
parser
.
add_argument
(
"--det_east_nms_thresh"
,
type
=
float
,
default
=
0.2
)
# SAST parmas
parser
.
add_argument
(
"--det_sast_score_thresh"
,
type
=
float
,
default
=
0.5
)
parser
.
add_argument
(
"--det_sast_nms_thresh"
,
type
=
float
,
default
=
0.2
)
parser
.
add_argument
(
"--det_sast_polygon"
,
type
=
bool
,
default
=
False
)
# params for text recognizer
parser
.
add_argument
(
"--rec_algorithm"
,
type
=
str
,
default
=
'CRNN'
)
parser
.
add_argument
(
"--rec_model_dir"
,
type
=
str
)
parser
.
add_argument
(
"--rec_image_shape"
,
type
=
str
,
default
=
"3, 32, 100"
)
parser
.
add_argument
(
"--rec_char_type"
,
type
=
str
,
default
=
'ch'
)
parser
.
add_argument
(
"--rec_batch_num"
,
type
=
int
,
default
=
6
)
parser
.
add_argument
(
"--max_text_length"
,
type
=
int
,
default
=
25
)
parser
.
add_argument
(
"--rec_char_dict_path"
,
type
=
str
,
default
=
"./ppocr/utils/ppocr_keys_v1.txt"
)
parser
.
add_argument
(
"--use_space_char"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--vis_font_path"
,
type
=
str
,
default
=
"./doc/simfang.ttf"
)
parser
.
add_argument
(
"--drop_score"
,
type
=
float
,
default
=
0.5
)
# params for text classifier
parser
.
add_argument
(
"--use_angle_cls"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--cls_model_dir"
,
type
=
str
)
parser
.
add_argument
(
"--cls_image_shape"
,
type
=
str
,
default
=
"3, 48, 192"
)
parser
.
add_argument
(
"--label_list"
,
type
=
list
,
default
=
[
'0'
,
'180'
])
parser
.
add_argument
(
"--cls_batch_num"
,
type
=
int
,
default
=
6
)
parser
.
add_argument
(
"--cls_thresh"
,
type
=
float
,
default
=
0.9
)
parser
.
add_argument
(
"--enable_mkldnn"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_pdserving"
,
type
=
str2bool
,
default
=
False
)
return
parser
.
parse_args
()
def
create_predictor
(
args
,
mode
,
logger
):
if
mode
==
"det"
:
model_dir
=
args
.
det_model_dir
elif
mode
==
'cls'
:
model_dir
=
args
.
cls_model_dir
else
:
model_dir
=
args
.
rec_model_dir
if
model_dir
is
None
:
logger
.
info
(
"not find {} model file path {}"
.
format
(
mode
,
model_dir
))
sys
.
exit
(
0
)
model_file_path
=
model_dir
if
not
os
.
path
.
exists
(
model_file_path
):
logger
.
info
(
"not find model file path {}"
.
format
(
model_file_path
))
sys
.
exit
(
0
)
sess
=
ort
.
InferenceSession
(
model_file_path
)
return
sess
,
sess
.
get_inputs
()[
0
],
None
def
draw_text_det_res
(
dt_boxes
,
img_path
):
src_im
=
cv2
.
imread
(
img_path
)
for
box
in
dt_boxes
:
box
=
np
.
array
(
box
).
astype
(
np
.
int32
).
reshape
(
-
1
,
2
)
cv2
.
polylines
(
src_im
,
[
box
],
True
,
color
=
(
255
,
255
,
0
),
thickness
=
2
)
return
src_im
def
resize_img
(
img
,
input_size
=
600
):
"""
resize img and limit the longest side of the image to input_size
"""
img
=
np
.
array
(
img
)
im_shape
=
img
.
shape
im_size_max
=
np
.
max
(
im_shape
[
0
:
2
])
im_scale
=
float
(
input_size
)
/
float
(
im_size_max
)
img
=
cv2
.
resize
(
img
,
None
,
None
,
fx
=
im_scale
,
fy
=
im_scale
)
return
img
def
padding_img
(
img
,
input_size
=
[
640
,
640
]):
padding_im_h
=
input_size
[
0
]
padding_im_w
=
input_size
[
1
]
im_c
=
img
.
shape
[
2
]
im_h
=
img
.
shape
[
0
]
im_w
=
img
.
shape
[
1
]
padding_im
=
np
.
zeros
(
(
padding_im_h
,
padding_im_w
,
im_c
),
dtype
=
np
.
float32
)
+
255
padding_im
[:
im_h
,
:
im_w
,
:]
=
img
return
padding_im
def
draw_ocr
(
image
,
boxes
,
txts
=
None
,
scores
=
None
,
drop_score
=
0.5
,
font_path
=
"./doc/simfang.ttf"
):
"""
Visualize the results of OCR detection and recognition
args:
image(Image|array): RGB image
boxes(list): boxes with shape(N, 4, 2)
txts(list): the texts
scores(list): txxs corresponding scores
drop_score(float): only scores greater than drop_threshold will be visualized
font_path: the path of font which is used to draw text
return(array):
the visualized img
"""
if
scores
is
None
:
scores
=
[
1
]
*
len
(
boxes
)
box_num
=
len
(
boxes
)
for
i
in
range
(
box_num
):
if
scores
is
not
None
and
(
scores
[
i
]
<
drop_score
or
math
.
isnan
(
scores
[
i
])):
continue
box
=
np
.
reshape
(
np
.
array
(
boxes
[
i
]),
[
-
1
,
1
,
2
]).
astype
(
np
.
int64
)
image
=
cv2
.
polylines
(
np
.
array
(
image
),
[
box
],
True
,
(
255
,
0
,
0
),
2
)
if
txts
is
not
None
:
img
=
np
.
array
(
resize_img
(
image
,
input_size
=
600
))
txt_img
=
text_visual
(
txts
,
scores
,
img_h
=
img
.
shape
[
0
],
img_w
=
600
,
threshold
=
drop_score
,
font_path
=
font_path
)
img
=
np
.
concatenate
([
np
.
array
(
img
),
np
.
array
(
txt_img
)],
axis
=
1
)
return
img
return
image
def
draw_ocr_box_txt
(
image
,
boxes
,
txts
,
scores
=
None
,
drop_score
=
0.5
,
font_path
=
"./doc/fonts/simfang.ttf"
):
h
,
w
=
image
.
height
,
image
.
width
img_left
=
image
.
copy
()
img_right
=
Image
.
new
(
'RGB'
,
(
w
,
h
),
(
255
,
255
,
255
))
import
random
random
.
seed
(
0
)
draw_left
=
ImageDraw
.
Draw
(
img_left
)
draw_right
=
ImageDraw
.
Draw
(
img_right
)
for
idx
,
(
box
,
txt
)
in
enumerate
(
zip
(
boxes
,
txts
)):
if
scores
is
not
None
and
scores
[
idx
]
<
drop_score
:
continue
color
=
(
random
.
randint
(
0
,
255
),
random
.
randint
(
0
,
255
),
random
.
randint
(
0
,
255
))
draw_left
.
polygon
(
box
,
fill
=
color
)
draw_right
.
polygon
(
[
box
[
0
][
0
],
box
[
0
][
1
],
box
[
1
][
0
],
box
[
1
][
1
],
box
[
2
][
0
],
box
[
2
][
1
],
box
[
3
][
0
],
box
[
3
][
1
]
],
outline
=
color
)
box_height
=
math
.
sqrt
((
box
[
0
][
0
]
-
box
[
3
][
0
])
**
2
+
(
box
[
0
][
1
]
-
box
[
3
][
1
])
**
2
)
box_width
=
math
.
sqrt
((
box
[
0
][
0
]
-
box
[
1
][
0
])
**
2
+
(
box
[
0
][
1
]
-
box
[
1
][
1
])
**
2
)
if
box_height
>
2
*
box_width
:
font_size
=
max
(
int
(
box_width
*
0.9
),
10
)
font
=
ImageFont
.
truetype
(
font_path
,
font_size
,
encoding
=
"utf-8"
)
cur_y
=
box
[
0
][
1
]
for
c
in
txt
:
char_size
=
font
.
getsize
(
c
)
draw_right
.
text
(
(
box
[
0
][
0
]
+
3
,
cur_y
),
c
,
fill
=
(
0
,
0
,
0
),
font
=
font
)
cur_y
+=
char_size
[
1
]
else
:
font_size
=
max
(
int
(
box_height
*
0.8
),
10
)
font
=
ImageFont
.
truetype
(
font_path
,
font_size
,
encoding
=
"utf-8"
)
draw_right
.
text
(
[
box
[
0
][
0
],
box
[
0
][
1
]],
txt
,
fill
=
(
0
,
0
,
0
),
font
=
font
)
img_left
=
Image
.
blend
(
image
,
img_left
,
0.5
)
img_show
=
Image
.
new
(
'RGB'
,
(
w
*
2
,
h
),
(
255
,
255
,
255
))
img_show
.
paste
(
img_left
,
(
0
,
0
,
w
,
h
))
img_show
.
paste
(
img_right
,
(
w
,
0
,
w
*
2
,
h
))
return
np
.
array
(
img_show
)
def
str_count
(
s
):
"""
Count the number of Chinese characters,
a single English character and a single number
equal to half the length of Chinese characters.
args:
s(string): the input of string
return(int):
the number of Chinese characters
"""
import
string
count_zh
=
count_pu
=
0
s_len
=
len
(
s
)
en_dg_count
=
0
for
c
in
s
:
if
c
in
string
.
ascii_letters
or
c
.
isdigit
()
or
c
.
isspace
():
en_dg_count
+=
1
elif
c
.
isalpha
():
count_zh
+=
1
else
:
count_pu
+=
1
return
s_len
-
math
.
ceil
(
en_dg_count
/
2
)
def
text_visual
(
texts
,
scores
,
img_h
=
400
,
img_w
=
600
,
threshold
=
0.
,
font_path
=
"./doc/simfang.ttf"
):
"""
create new blank img and draw txt on it
args:
texts(list): the text will be draw
scores(list|None): corresponding score of each txt
img_h(int): the height of blank img
img_w(int): the width of blank img
font_path: the path of font which is used to draw text
return(array):
"""
if
scores
is
not
None
:
assert
len
(
texts
)
==
len
(
scores
),
"The number of txts and corresponding scores must match"
def
create_blank_img
():
blank_img
=
np
.
ones
(
shape
=
[
img_h
,
img_w
],
dtype
=
np
.
int8
)
*
255
blank_img
[:,
img_w
-
1
:]
=
0
blank_img
=
Image
.
fromarray
(
blank_img
).
convert
(
"RGB"
)
draw_txt
=
ImageDraw
.
Draw
(
blank_img
)
return
blank_img
,
draw_txt
blank_img
,
draw_txt
=
create_blank_img
()
font_size
=
20
txt_color
=
(
0
,
0
,
0
)
font
=
ImageFont
.
truetype
(
font_path
,
font_size
,
encoding
=
"utf-8"
)
gap
=
font_size
+
5
txt_img_list
=
[]
count
,
index
=
1
,
0
for
idx
,
txt
in
enumerate
(
texts
):
index
+=
1
if
scores
[
idx
]
<
threshold
or
math
.
isnan
(
scores
[
idx
]):
index
-=
1
continue
first_line
=
True
while
str_count
(
txt
)
>=
img_w
//
font_size
-
4
:
tmp
=
txt
txt
=
tmp
[:
img_w
//
font_size
-
4
]
if
first_line
:
new_txt
=
str
(
index
)
+
': '
+
txt
first_line
=
False
else
:
new_txt
=
' '
+
txt
draw_txt
.
text
((
0
,
gap
*
count
),
new_txt
,
txt_color
,
font
=
font
)
txt
=
tmp
[
img_w
//
font_size
-
4
:]
if
count
>=
img_h
//
gap
-
1
:
txt_img_list
.
append
(
np
.
array
(
blank_img
))
blank_img
,
draw_txt
=
create_blank_img
()
count
=
0
count
+=
1
if
first_line
:
new_txt
=
str
(
index
)
+
': '
+
txt
+
' '
+
'%.3f'
%
(
scores
[
idx
])
else
:
new_txt
=
" "
+
txt
+
" "
+
'%.3f'
%
(
scores
[
idx
])
draw_txt
.
text
((
0
,
gap
*
count
),
new_txt
,
txt_color
,
font
=
font
)
# whether add new blank img or not
if
count
>=
img_h
//
gap
-
1
and
idx
+
1
<
len
(
texts
):
txt_img_list
.
append
(
np
.
array
(
blank_img
))
blank_img
,
draw_txt
=
create_blank_img
()
count
=
0
count
+=
1
txt_img_list
.
append
(
np
.
array
(
blank_img
))
if
len
(
txt_img_list
)
==
1
:
blank_img
=
np
.
array
(
txt_img_list
[
0
])
else
:
blank_img
=
np
.
concatenate
(
txt_img_list
,
axis
=
1
)
return
np
.
array
(
blank_img
)
def
base64_to_cv2
(
b64str
):
import
base64
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
def
draw_boxes
(
image
,
boxes
,
scores
=
None
,
drop_score
=
0.5
):
if
scores
is
None
:
scores
=
[
1
]
*
len
(
boxes
)
for
(
box
,
score
)
in
zip
(
boxes
,
scores
):
if
score
<
drop_score
:
continue
box
=
np
.
reshape
(
np
.
array
(
box
),
[
-
1
,
1
,
2
]).
astype
(
np
.
int64
)
image
=
cv2
.
polylines
(
np
.
array
(
image
),
[
box
],
True
,
(
255
,
0
,
0
),
2
)
return
image
if
__name__
==
'__main__'
:
test_img
=
"./doc/test_v2"
predict_txt
=
"./doc/predict.txt"
f
=
open
(
predict_txt
,
'r'
)
data
=
f
.
readlines
()
img_path
,
anno
=
data
[
0
].
strip
().
split
(
'
\t
'
)
img_name
=
os
.
path
.
basename
(
img_path
)
img_path
=
os
.
path
.
join
(
test_img
,
img_name
)
image
=
Image
.
open
(
img_path
)
data
=
json
.
loads
(
anno
)
boxes
,
txts
,
scores
=
[],
[],
[]
for
dic
in
data
:
boxes
.
append
(
dic
[
'points'
])
txts
.
append
(
dic
[
'transcription'
])
scores
.
append
(
round
(
dic
[
'scores'
],
3
))
new_img
=
draw_ocr
(
image
,
boxes
,
txts
,
scores
)
cv2
.
imwrite
(
img_name
,
new_img
)
test_tipc/configs/ppocr_det_mobile_params.txt
浏览文件 @
3f5ffc32
...
...
@@ -116,7 +116,7 @@ infer_model:./models/ch_ppocr_mobile_v2.0_det_opt.nb|./models/ch_ppocr_mobile_v2
--save_file:./inference/det_mobile_onnx/model.onnx
--opset_version:10
--enable_onnx_checker:True
inference:
deploy/paddle2onnx
/predict_det.py
inference:
tools/infer
/predict_det.py
--use_gpu:False
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
\ No newline at end of file
test_tipc/test_paddle2onnx.sh
浏览文件 @
3f5ffc32
...
...
@@ -11,7 +11,7 @@ python=$(func_parser_value "${lines[2]}")
# parser params
dataline
=
$(
awk
'NR==111, NR==12
2
{print}'
$FILENAME
)
dataline
=
$(
awk
'NR==111, NR==12
3
{print}'
$FILENAME
)
IFS
=
$'
\n
'
lines
=(
${
dataline
}
)
...
...
@@ -63,7 +63,7 @@ function func_paddle2onnx(){
set_gpu
=
$(
func_set_params
"
${
use_gpu_key
}
"
"
${
use_gpu_value
}
"
)
set_model_dir
=
$(
func_set_params
"
${
det_model_key
}
"
"
${
save_file_value
}
"
)
set_img_dir
=
$(
func_set_params
"
${
image_dir_key
}
"
"
${
image_dir_value
}
"
)
infer_model_cmd
=
"
${
python
}
${
inference_py
}
${
set_gpu
}
${
set_img_dir
}
${
set_model_dir
}
>
${
_save_log_path
}
2>&1 "
infer_model_cmd
=
"
${
python
}
${
inference_py
}
${
set_gpu
}
${
set_img_dir
}
${
set_model_dir
}
--use_onnx=True
>
${
_save_log_path
}
2>&1 "
eval
$infer_model_cmd
status_check
$last_status
"
${
infer_model_cmd
}
"
"
${
status_log
}
"
}
...
...
tools/infer/predict_cls.py
浏览文件 @
3f5ffc32
...
...
@@ -47,6 +47,7 @@ class TextClassifier(object):
self
.
postprocess_op
=
build_post_process
(
postprocess_params
)
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
_
=
\
utility
.
create_predictor
(
args
,
'cls'
,
logger
)
self
.
use_onnx
=
args
.
use_onnx
def
resize_norm_img
(
self
,
img
):
imgC
,
imgH
,
imgW
=
self
.
cls_image_shape
...
...
@@ -100,10 +101,16 @@ class TextClassifier(object):
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
norm_img_batch
=
norm_img_batch
.
copy
()
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
run
()
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
self
.
predictor
.
try_shrink_memory
()
if
self
.
use_onnx
:
input_dict
=
{}
input_dict
[
self
.
input_tensor
.
name
]
=
norm_img_batch
outputs
=
self
.
predictor
.
run
(
self
.
output_tensors
,
input_dict
)
prob_out
=
outputs
[
0
]
else
:
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
run
()
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
self
.
predictor
.
try_shrink_memory
()
cls_result
=
self
.
postprocess_op
(
prob_out
)
elapse
+=
time
.
time
()
-
starttime
for
rno
in
range
(
len
(
cls_result
)):
...
...
tools/infer/predict_det.py
浏览文件 @
3f5ffc32
...
...
@@ -38,6 +38,7 @@ class TextDetector(object):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
det_algorithm
=
args
.
det_algorithm
self
.
use_onnx
=
args
.
use_onnx
pre_process_list
=
[{
'DetResizeForTest'
:
{
'limit_side_len'
:
args
.
det_limit_side_len
,
...
...
@@ -100,7 +101,12 @@ class TextDetector(object):
else
:
logger
.
info
(
"unknown det_algorithm:{}"
.
format
(
self
.
det_algorithm
))
sys
.
exit
(
0
)
if
self
.
use_onnx
:
pre_process_list
[
0
]
=
{
'DetResizeForTest'
:
{
'image_shape'
:
[
640
,
640
]
}
}
self
.
preprocess_op
=
create_operators
(
pre_process_list
)
self
.
postprocess_op
=
build_post_process
(
postprocess_params
)
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
self
.
config
=
utility
.
create_predictor
(
...
...
@@ -198,15 +204,19 @@ class TextDetector(object):
if
self
.
args
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
self
.
input_tensor
.
copy_from_cpu
(
img
)
self
.
predictor
.
run
()
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
if
self
.
args
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
if
self
.
use_onnx
:
input_dict
=
{}
input_dict
[
self
.
input_tensor
.
name
]
=
img
outputs
=
self
.
predictor
.
run
(
self
.
output_tensors
,
input_dict
)
else
:
self
.
input_tensor
.
copy_from_cpu
(
img
)
self
.
predictor
.
run
()
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
if
self
.
args
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
preds
=
{}
if
self
.
det_algorithm
==
"EAST"
:
...
...
tools/infer/predict_rec.py
浏览文件 @
3f5ffc32
...
...
@@ -73,6 +73,7 @@ class TextRecognizer(object):
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
self
.
config
=
\
utility
.
create_predictor
(
args
,
'rec'
,
logger
)
self
.
benchmark
=
args
.
benchmark
self
.
use_onnx
=
args
.
use_onnx
if
args
.
benchmark
:
import
auto_log
pid
=
os
.
getpid
()
...
...
@@ -108,6 +109,8 @@ class TextRecognizer(object):
assert
imgC
==
img
.
shape
[
2
]
max_wh_ratio
=
max
(
max_wh_ratio
,
imgW
/
imgH
)
imgW
=
int
((
32
*
max_wh_ratio
))
if
self
.
use_onnx
:
imgW
=
100
h
,
w
=
img
.
shape
[:
2
]
ratio
=
w
/
float
(
h
)
if
math
.
ceil
(
imgH
*
ratio
)
>
imgW
:
...
...
@@ -297,51 +300,72 @@ class TextRecognizer(object):
gsrm_slf_attn_bias1_list
,
gsrm_slf_attn_bias2_list
,
]
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
i
])
self
.
predictor
.
run
()
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
if
self
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
preds
=
{
"predict"
:
outputs
[
2
]}
if
self
.
use_onnx
:
input_dict
=
{}
input_dict
[
self
.
input_tensor
.
name
]
=
norm_img_batch
outputs
=
self
.
predictor
.
run
(
self
.
output_tensors
,
input_dict
)
preds
=
{
"predict"
:
outputs
[
2
]}
else
:
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
i
])
self
.
predictor
.
run
()
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
if
self
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
preds
=
{
"predict"
:
outputs
[
2
]}
elif
self
.
rec_algorithm
==
"SAR"
:
valid_ratios
=
np
.
concatenate
(
valid_ratios
)
inputs
=
[
norm_img_batch
,
valid_ratios
,
]
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
i
])
self
.
predictor
.
run
()
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
if
self
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
preds
=
outputs
[
0
]
else
:
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
run
()
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
if
self
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
if
len
(
outputs
)
!=
1
:
preds
=
outputs
if
self
.
use_onnx
:
input_dict
=
{}
input_dict
[
self
.
input_tensor
.
name
]
=
norm_img_batch
outputs
=
self
.
predictor
.
run
(
self
.
output_tensors
,
input_dict
)
preds
=
outputs
[
0
]
else
:
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
i
])
self
.
predictor
.
run
()
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
if
self
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
preds
=
outputs
[
0
]
else
:
if
self
.
use_onnx
:
input_dict
=
{}
input_dict
[
self
.
input_tensor
.
name
]
=
norm_img_batch
outputs
=
self
.
predictor
.
run
(
self
.
output_tensors
,
input_dict
)
preds
=
outputs
[
0
]
else
:
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
run
()
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
if
self
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
if
len
(
outputs
)
!=
1
:
preds
=
outputs
else
:
preds
=
outputs
[
0
]
rec_result
=
self
.
postprocess_op
(
preds
)
for
rno
in
range
(
len
(
rec_result
)):
rec_res
[
indices
[
beg_img_no
+
rno
]]
=
rec_result
[
rno
]
...
...
tools/infer/utility.py
浏览文件 @
3f5ffc32
...
...
@@ -121,6 +121,7 @@ def init_args():
parser
.
add_argument
(
"--save_log_path"
,
type
=
str
,
default
=
"./log_output/"
)
parser
.
add_argument
(
"--show_log"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--use_onnx"
,
type
=
str2bool
,
default
=
False
)
return
parser
...
...
@@ -144,152 +145,163 @@ def create_predictor(args, mode, logger):
if
model_dir
is
None
:
logger
.
info
(
"not find {} model file path {}"
.
format
(
mode
,
model_dir
))
sys
.
exit
(
0
)
model_file_path
=
model_dir
+
"/inference.pdmodel"
params_file_path
=
model_dir
+
"/inference.pdiparams"
if
not
os
.
path
.
exists
(
model_file_path
):
raise
ValueError
(
"not find model file path {}"
.
format
(
model_file_path
))
if
not
os
.
path
.
exists
(
params_file_path
):
raise
ValueError
(
"not find params file path {}"
.
format
(
params_file_path
))
config
=
inference
.
Config
(
model_file_path
,
params_file_path
)
if
hasattr
(
args
,
'precision'
):
if
args
.
precision
==
"fp16"
and
args
.
use_tensorrt
:
precision
=
inference
.
PrecisionType
.
Half
elif
args
.
precision
==
"int8"
:
precision
=
inference
.
PrecisionType
.
Int8
else
:
precision
=
inference
.
PrecisionType
.
Float32
if
args
.
use_onnx
:
import
onnxruntime
as
ort
model_file_path
=
model_dir
if
not
os
.
path
.
exists
(
model_file_path
):
raise
ValueError
(
"not find model file path {}"
.
format
(
model_file_path
))
sess
=
ort
.
InferenceSession
(
model_file_path
)
return
sess
,
sess
.
get_inputs
()[
0
],
None
,
None
else
:
precision
=
inference
.
PrecisionType
.
Float32
if
args
.
use_gpu
:
gpu_id
=
get_infer_gpuid
()
if
gpu_id
is
None
:
raise
ValueError
(
"Not found GPU in current device. Please check your device or set args.use_gpu as False"
)
config
.
enable_use_gpu
(
args
.
gpu_mem
,
0
)
if
args
.
use_tensorrt
:
config
.
enable_tensorrt_engine
(
precision_mode
=
precision
,
max_batch_size
=
args
.
max_batch_size
,
min_subgraph_size
=
args
.
min_subgraph_size
)
# skip the minmum trt subgraph
if
mode
==
"det"
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
50
,
50
],
"conv2d_92.tmp_0"
:
[
1
,
120
,
20
,
20
],
"conv2d_91.tmp_0"
:
[
1
,
24
,
10
,
10
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
20
,
20
],
"nearest_interp_v2_1.tmp_0"
:
[
1
,
256
,
10
,
10
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
256
,
20
,
20
],
"conv2d_124.tmp_0"
:
[
1
,
256
,
20
,
20
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
64
,
20
,
20
],
"nearest_interp_v2_4.tmp_0"
:
[
1
,
64
,
20
,
20
],
"nearest_interp_v2_5.tmp_0"
:
[
1
,
64
,
20
,
20
],
"elementwise_add_7"
:
[
1
,
56
,
2
,
2
],
"nearest_interp_v2_0.tmp_0"
:
[
1
,
256
,
2
,
2
]
}
max_input_shape
=
{
"x"
:
[
1
,
3
,
2000
,
2000
],
"conv2d_92.tmp_0"
:
[
1
,
120
,
400
,
400
],
"conv2d_91.tmp_0"
:
[
1
,
24
,
200
,
200
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
400
,
400
],
"nearest_interp_v2_1.tmp_0"
:
[
1
,
256
,
200
,
200
],
"conv2d_124.tmp_0"
:
[
1
,
256
,
400
,
400
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
256
,
400
,
400
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
64
,
400
,
400
],
"nearest_interp_v2_4.tmp_0"
:
[
1
,
64
,
400
,
400
],
"nearest_interp_v2_5.tmp_0"
:
[
1
,
64
,
400
,
400
],
"elementwise_add_7"
:
[
1
,
56
,
400
,
400
],
"nearest_interp_v2_0.tmp_0"
:
[
1
,
256
,
400
,
400
]
}
opt_input_shape
=
{
"x"
:
[
1
,
3
,
640
,
640
],
"conv2d_92.tmp_0"
:
[
1
,
120
,
160
,
160
],
"conv2d_91.tmp_0"
:
[
1
,
24
,
80
,
80
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
160
,
160
],
"nearest_interp_v2_1.tmp_0"
:
[
1
,
256
,
80
,
80
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
256
,
160
,
160
],
"conv2d_124.tmp_0"
:
[
1
,
256
,
160
,
160
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
64
,
160
,
160
],
"nearest_interp_v2_4.tmp_0"
:
[
1
,
64
,
160
,
160
],
"nearest_interp_v2_5.tmp_0"
:
[
1
,
64
,
160
,
160
],
"elementwise_add_7"
:
[
1
,
56
,
40
,
40
],
"nearest_interp_v2_0.tmp_0"
:
[
1
,
256
,
40
,
40
]
}
min_pact_shape
=
{
"nearest_interp_v2_26.tmp_0"
:
[
1
,
256
,
20
,
20
],
"nearest_interp_v2_27.tmp_0"
:
[
1
,
64
,
20
,
20
],
"nearest_interp_v2_28.tmp_0"
:
[
1
,
64
,
20
,
20
],
"nearest_interp_v2_29.tmp_0"
:
[
1
,
64
,
20
,
20
]
}
max_pact_shape
=
{
"nearest_interp_v2_26.tmp_0"
:
[
1
,
256
,
400
,
400
],
"nearest_interp_v2_27.tmp_0"
:
[
1
,
64
,
400
,
400
],
"nearest_interp_v2_28.tmp_0"
:
[
1
,
64
,
400
,
400
],
"nearest_interp_v2_29.tmp_0"
:
[
1
,
64
,
400
,
400
]
}
opt_pact_shape
=
{
"nearest_interp_v2_26.tmp_0"
:
[
1
,
256
,
160
,
160
],
"nearest_interp_v2_27.tmp_0"
:
[
1
,
64
,
160
,
160
],
"nearest_interp_v2_28.tmp_0"
:
[
1
,
64
,
160
,
160
],
"nearest_interp_v2_29.tmp_0"
:
[
1
,
64
,
160
,
160
]
}
min_input_shape
.
update
(
min_pact_shape
)
max_input_shape
.
update
(
max_pact_shape
)
opt_input_shape
.
update
(
opt_pact_shape
)
elif
mode
==
"rec"
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
32
,
10
]}
max_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
32
,
2000
]}
opt_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
32
,
320
]}
elif
mode
==
"cls"
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
48
,
10
]}
max_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
48
,
2000
]}
opt_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
48
,
320
]}
model_file_path
=
model_dir
+
"/inference.pdmodel"
params_file_path
=
model_dir
+
"/inference.pdiparams"
if
not
os
.
path
.
exists
(
model_file_path
):
raise
ValueError
(
"not find model file path {}"
.
format
(
model_file_path
))
if
not
os
.
path
.
exists
(
params_file_path
):
raise
ValueError
(
"not find params file path {}"
.
format
(
params_file_path
))
config
=
inference
.
Config
(
model_file_path
,
params_file_path
)
if
hasattr
(
args
,
'precision'
):
if
args
.
precision
==
"fp16"
and
args
.
use_tensorrt
:
precision
=
inference
.
PrecisionType
.
Half
elif
args
.
precision
==
"int8"
:
precision
=
inference
.
PrecisionType
.
Int8
else
:
precision
=
inference
.
PrecisionType
.
Float32
else
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
10
,
10
]}
max_input_shape
=
{
"x"
:
[
1
,
3
,
1000
,
1000
]}
opt_input_shape
=
{
"x"
:
[
1
,
3
,
500
,
500
]}
config
.
set_trt_dynamic_shape_info
(
min_input_shape
,
max_input_shape
,
opt_input_shape
)
precision
=
inference
.
PrecisionType
.
Float32
if
args
.
use_gpu
:
gpu_id
=
get_infer_gpuid
()
if
gpu_id
is
None
:
raise
ValueError
(
"Not found GPU in current device. Please check your device or set args.use_gpu as False"
)
config
.
enable_use_gpu
(
args
.
gpu_mem
,
0
)
if
args
.
use_tensorrt
:
config
.
enable_tensorrt_engine
(
precision_mode
=
precision
,
max_batch_size
=
args
.
max_batch_size
,
min_subgraph_size
=
args
.
min_subgraph_size
)
# skip the minmum trt subgraph
if
mode
==
"det"
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
50
,
50
],
"conv2d_92.tmp_0"
:
[
1
,
120
,
20
,
20
],
"conv2d_91.tmp_0"
:
[
1
,
24
,
10
,
10
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
20
,
20
],
"nearest_interp_v2_1.tmp_0"
:
[
1
,
256
,
10
,
10
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
256
,
20
,
20
],
"conv2d_124.tmp_0"
:
[
1
,
256
,
20
,
20
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
64
,
20
,
20
],
"nearest_interp_v2_4.tmp_0"
:
[
1
,
64
,
20
,
20
],
"nearest_interp_v2_5.tmp_0"
:
[
1
,
64
,
20
,
20
],
"elementwise_add_7"
:
[
1
,
56
,
2
,
2
],
"nearest_interp_v2_0.tmp_0"
:
[
1
,
256
,
2
,
2
]
}
max_input_shape
=
{
"x"
:
[
1
,
3
,
2000
,
2000
],
"conv2d_92.tmp_0"
:
[
1
,
120
,
400
,
400
],
"conv2d_91.tmp_0"
:
[
1
,
24
,
200
,
200
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
400
,
400
],
"nearest_interp_v2_1.tmp_0"
:
[
1
,
256
,
200
,
200
],
"conv2d_124.tmp_0"
:
[
1
,
256
,
400
,
400
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
256
,
400
,
400
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
64
,
400
,
400
],
"nearest_interp_v2_4.tmp_0"
:
[
1
,
64
,
400
,
400
],
"nearest_interp_v2_5.tmp_0"
:
[
1
,
64
,
400
,
400
],
"elementwise_add_7"
:
[
1
,
56
,
400
,
400
],
"nearest_interp_v2_0.tmp_0"
:
[
1
,
256
,
400
,
400
]
}
opt_input_shape
=
{
"x"
:
[
1
,
3
,
640
,
640
],
"conv2d_92.tmp_0"
:
[
1
,
120
,
160
,
160
],
"conv2d_91.tmp_0"
:
[
1
,
24
,
80
,
80
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
160
,
160
],
"nearest_interp_v2_1.tmp_0"
:
[
1
,
256
,
80
,
80
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
256
,
160
,
160
],
"conv2d_124.tmp_0"
:
[
1
,
256
,
160
,
160
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
64
,
160
,
160
],
"nearest_interp_v2_4.tmp_0"
:
[
1
,
64
,
160
,
160
],
"nearest_interp_v2_5.tmp_0"
:
[
1
,
64
,
160
,
160
],
"elementwise_add_7"
:
[
1
,
56
,
40
,
40
],
"nearest_interp_v2_0.tmp_0"
:
[
1
,
256
,
40
,
40
]
}
min_pact_shape
=
{
"nearest_interp_v2_26.tmp_0"
:
[
1
,
256
,
20
,
20
],
"nearest_interp_v2_27.tmp_0"
:
[
1
,
64
,
20
,
20
],
"nearest_interp_v2_28.tmp_0"
:
[
1
,
64
,
20
,
20
],
"nearest_interp_v2_29.tmp_0"
:
[
1
,
64
,
20
,
20
]
}
max_pact_shape
=
{
"nearest_interp_v2_26.tmp_0"
:
[
1
,
256
,
400
,
400
],
"nearest_interp_v2_27.tmp_0"
:
[
1
,
64
,
400
,
400
],
"nearest_interp_v2_28.tmp_0"
:
[
1
,
64
,
400
,
400
],
"nearest_interp_v2_29.tmp_0"
:
[
1
,
64
,
400
,
400
]
}
opt_pact_shape
=
{
"nearest_interp_v2_26.tmp_0"
:
[
1
,
256
,
160
,
160
],
"nearest_interp_v2_27.tmp_0"
:
[
1
,
64
,
160
,
160
],
"nearest_interp_v2_28.tmp_0"
:
[
1
,
64
,
160
,
160
],
"nearest_interp_v2_29.tmp_0"
:
[
1
,
64
,
160
,
160
]
}
min_input_shape
.
update
(
min_pact_shape
)
max_input_shape
.
update
(
max_pact_shape
)
opt_input_shape
.
update
(
opt_pact_shape
)
elif
mode
==
"rec"
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
32
,
10
]}
max_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
32
,
2000
]}
opt_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
32
,
320
]}
elif
mode
==
"cls"
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
48
,
10
]}
max_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
48
,
2000
]}
opt_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
48
,
320
]}
else
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
10
,
10
]}
max_input_shape
=
{
"x"
:
[
1
,
3
,
1000
,
1000
]}
opt_input_shape
=
{
"x"
:
[
1
,
3
,
500
,
500
]}
config
.
set_trt_dynamic_shape_info
(
min_input_shape
,
max_input_shape
,
opt_input_shape
)
else
:
config
.
disable_gpu
()
if
hasattr
(
args
,
"cpu_threads"
):
config
.
set_cpu_math_library_num_threads
(
args
.
cpu_threads
)
else
:
# default cpu threads as 10
config
.
set_cpu_math_library_num_threads
(
10
)
if
args
.
enable_mkldnn
:
# cache 10 different shapes for mkldnn to avoid memory leak
config
.
set_mkldnn_cache_capacity
(
10
)
config
.
enable_mkldnn
()
if
args
.
precision
==
"fp16"
:
config
.
enable_mkldnn_bfloat16
()
# enable memory optim
config
.
enable_memory_optim
()
config
.
disable_glog_info
()
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
if
mode
==
'table'
:
config
.
delete_pass
(
"fc_fuse_pass"
)
# not supported for table
config
.
switch_use_feed_fetch_ops
(
False
)
config
.
switch_ir_optim
(
True
)
# create predictor
predictor
=
inference
.
create_predictor
(
config
)
input_names
=
predictor
.
get_input_names
()
for
name
in
input_names
:
input_tensor
=
predictor
.
get_input_handle
(
name
)
output_names
=
predictor
.
get_output_names
()
output_tensors
=
[]
for
output_name
in
output_names
:
output_tensor
=
predictor
.
get_output_handle
(
output_name
)
output_tensors
.
append
(
output_tensor
)
return
predictor
,
input_tensor
,
output_tensors
,
config
config
.
disable_gpu
()
if
hasattr
(
args
,
"cpu_threads"
):
config
.
set_cpu_math_library_num_threads
(
args
.
cpu_threads
)
else
:
# default cpu threads as 10
config
.
set_cpu_math_library_num_threads
(
10
)
if
args
.
enable_mkldnn
:
# cache 10 different shapes for mkldnn to avoid memory leak
config
.
set_mkldnn_cache_capacity
(
10
)
config
.
enable_mkldnn
()
if
args
.
precision
==
"fp16"
:
config
.
enable_mkldnn_bfloat16
()
# enable memory optim
config
.
enable_memory_optim
()
config
.
disable_glog_info
()
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
if
mode
==
'table'
:
config
.
delete_pass
(
"fc_fuse_pass"
)
# not supported for table
config
.
switch_use_feed_fetch_ops
(
False
)
config
.
switch_ir_optim
(
True
)
# create predictor
predictor
=
inference
.
create_predictor
(
config
)
input_names
=
predictor
.
get_input_names
()
for
name
in
input_names
:
input_tensor
=
predictor
.
get_input_handle
(
name
)
output_names
=
predictor
.
get_output_names
()
output_tensors
=
[]
for
output_name
in
output_names
:
output_tensor
=
predictor
.
get_output_handle
(
output_name
)
output_tensors
.
append
(
output_tensor
)
return
predictor
,
input_tensor
,
output_tensors
,
config
def
get_infer_gpuid
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录