提交 f688909b 编写于 作者: T Topdu

fix nrtr export inference model

上级 cc24646a
......@@ -46,7 +46,7 @@ Architecture:
name: Transformer
d_model: 512
num_encoder_layers: 6
beam_size: 10 # When Beam size is greater than 0, it means to use beam search when evaluation.
beam_size: -1 # When Beam size is greater than 0, it means to use beam search when evaluation.
Loss:
......@@ -65,7 +65,7 @@ Train:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- NRTRDecodeImage: # load image
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- NRTRLabelEncode: # Class handling label
......@@ -85,7 +85,7 @@ Eval:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/evaluation/
transforms:
- NRTRDecodeImage: # load image
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- NRTRLabelEncode: # Class handling label
......
......@@ -174,21 +174,26 @@ class NRTRLabelEncode(BaseRecLabelEncode):
super(NRTRLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data['length'] = np.array(len(text))
text.insert(0, 2)
text.append(3)
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ['blank','<unk>','<s>','</s>'] + dict_character
dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
return dict_character
class CTCLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
......@@ -588,7 +593,7 @@ class SARLabelEncode(BaseRecLabelEncode):
data['length'] = np.array(len(text))
target = [self.start_idx] + text + [self.end_idx]
padded_text = [self.padding_idx for _ in range(self.max_text_len)]
padded_text[:len(target)] = target
data['label'] = np.array(padded_text)
return data
......
......@@ -44,12 +44,33 @@ class ClsResizeImg(object):
class NRTRRecResizeImg(object):
def __init__(self, image_shape, resize_type, **kwargs):
def __init__(self, image_shape, resize_type, padding=False, **kwargs):
self.image_shape = image_shape
self.resize_type = resize_type
self.padding = padding
def __call__(self, data):
img = data['image']
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
image_shape = self.image_shape
if self.padding:
imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
norm_img = np.expand_dims(resized_image, -1)
norm_img = norm_img.transpose((2, 0, 1))
resized_image = norm_img.astype(np.float32) / 128. - 1.
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
data['image'] = padding_im
return data
if self.resize_type == 'PIL':
image_pil = Image.fromarray(np.uint8(img))
img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
......@@ -109,7 +130,8 @@ class SARRecResizeImg(object):
def __call__(self, data):
img = data['image']
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(img, self.image_shape, self.width_downsample_ratio)
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
img, self.image_shape, self.width_downsample_ratio)
data['image'] = norm_img
data['resized_shape'] = resize_shape
data['pad_shape'] = pad_shape
......
......@@ -15,7 +15,6 @@ import numpy as np
import os
import random
from paddle.io import Dataset
from .imaug import transform, create_operators
......
......@@ -13,6 +13,7 @@
# limitations under the License.
from paddle import nn
import paddle
class MTB(nn.Layer):
......@@ -40,7 +41,8 @@ class MTB(nn.Layer):
x = self.block(images)
if self.cnn_num == 2:
# (b, w, h, c)
x = x.transpose([0, 3, 2, 1])
x_shape = x.shape
x = x.reshape([x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
x = paddle.transpose(x, [0, 3, 2, 1])
x_shape = paddle.shape(x)
x = paddle.reshape(
x, [x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
return x
......@@ -71,8 +71,6 @@ class MultiheadAttention(nn.Layer):
value,
key_padding_mask=None,
incremental_state=None,
need_weights=True,
static_kv=False,
attn_mask=None):
"""
Inputs of forward function
......@@ -88,46 +86,42 @@ class MultiheadAttention(nn.Layer):
attn_output: [target length, batch size, embed dim]
attn_output_weights: [batch size, target length, sequence length]
"""
tgt_len, bsz, embed_dim = query.shape
assert embed_dim == self.embed_dim
assert list(query.shape) == [tgt_len, bsz, embed_dim]
assert key.shape == value.shape
q_shape = paddle.shape(query)
src_shape = paddle.shape(key)
q = self._in_proj_q(query)
k = self._in_proj_k(key)
v = self._in_proj_v(value)
q *= self.scaling
q = q.reshape([tgt_len, bsz * self.num_heads, self.head_dim]).transpose(
[1, 0, 2])
k = k.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose(
[1, 0, 2])
v = v.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose(
[1, 0, 2])
src_len = k.shape[1]
q = paddle.transpose(
paddle.reshape(
q, [q_shape[0], q_shape[1], self.num_heads, self.head_dim]),
[1, 2, 0, 3])
k = paddle.transpose(
paddle.reshape(
k, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
[1, 2, 0, 3])
v = paddle.transpose(
paddle.reshape(
v, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
[1, 2, 0, 3])
if key_padding_mask is not None:
assert key_padding_mask.shape[0] == bsz
assert key_padding_mask.shape[1] == src_len
attn_output_weights = paddle.bmm(q, k.transpose([0, 2, 1]))
assert list(attn_output_weights.
shape) == [bsz * self.num_heads, tgt_len, src_len]
assert key_padding_mask.shape[0] == q_shape[1]
assert key_padding_mask.shape[1] == src_shape[0]
attn_output_weights = paddle.matmul(q,
paddle.transpose(k, [0, 1, 3, 2]))
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_mask = paddle.unsqueeze(paddle.unsqueeze(attn_mask, 0), 0)
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.reshape(
[bsz, self.num_heads, tgt_len, src_len])
key = key_padding_mask.unsqueeze(1).unsqueeze(2).astype('float32')
y = paddle.full(shape=key.shape, dtype='float32', fill_value='-inf')
attn_output_weights = paddle.reshape(
attn_output_weights,
[q_shape[1], self.num_heads, q_shape[0], src_shape[0]])
key = paddle.unsqueeze(paddle.unsqueeze(key_padding_mask, 1), 2)
key = paddle.cast(key, 'float32')
y = paddle.full(
shape=paddle.shape(key), dtype='float32', fill_value='-inf')
y = paddle.where(key == 0., key, y)
attn_output_weights += y
attn_output_weights = attn_output_weights.reshape(
[bsz * self.num_heads, tgt_len, src_len])
attn_output_weights = F.softmax(
attn_output_weights.astype('float32'),
axis=-1,
......@@ -136,43 +130,34 @@ class MultiheadAttention(nn.Layer):
attn_output_weights = F.dropout(
attn_output_weights, p=self.dropout, training=self.training)
attn_output = paddle.bmm(attn_output_weights, v)
assert list(attn_output.
shape) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn_output = attn_output.transpose([1, 0, 2]).reshape(
[tgt_len, bsz, embed_dim])
attn_output = paddle.matmul(attn_output_weights, v)
attn_output = paddle.reshape(
paddle.transpose(attn_output, [2, 0, 1, 3]),
[q_shape[0], q_shape[1], self.embed_dim])
attn_output = self.out_proj(attn_output)
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.reshape(
[bsz, self.num_heads, tgt_len, src_len])
attn_output_weights = attn_output_weights.sum(
axis=1) / self.num_heads
else:
attn_output_weights = None
return attn_output, attn_output_weights
return attn_output
def _in_proj_q(self, query):
query = query.transpose([1, 2, 0])
query = paddle.transpose(query, [1, 2, 0])
query = paddle.unsqueeze(query, axis=2)
res = self.conv1(query)
res = paddle.squeeze(res, axis=2)
res = res.transpose([2, 0, 1])
res = paddle.transpose(res, [2, 0, 1])
return res
def _in_proj_k(self, key):
key = key.transpose([1, 2, 0])
key = paddle.transpose(key, [1, 2, 0])
key = paddle.unsqueeze(key, axis=2)
res = self.conv2(key)
res = paddle.squeeze(res, axis=2)
res = res.transpose([2, 0, 1])
res = paddle.transpose(res, [2, 0, 1])
return res
def _in_proj_v(self, value):
value = value.transpose([1, 2, 0]) #(1, 2, 0)
value = paddle.transpose(value, [1, 2, 0]) #(1, 2, 0)
value = paddle.unsqueeze(value, axis=2)
res = self.conv3(value)
res = paddle.squeeze(res, axis=2)
res = res.transpose([2, 0, 1])
res = paddle.transpose(res, [2, 0, 1])
return res
......@@ -61,12 +61,12 @@ class Transformer(nn.Layer):
custom_decoder=None,
in_channels=0,
out_channels=0,
dst_vocab_size=99,
scale_embedding=True):
super(Transformer, self).__init__()
self.out_channels = out_channels + 1
self.embedding = Embeddings(
d_model=d_model,
vocab=dst_vocab_size,
vocab=self.out_channels,
padding_idx=0,
scale_embedding=scale_embedding)
self.positional_encoding = PositionalEncoding(
......@@ -96,9 +96,10 @@ class Transformer(nn.Layer):
self.beam_size = beam_size
self.d_model = d_model
self.nhead = nhead
self.tgt_word_prj = nn.Linear(d_model, dst_vocab_size, bias_attr=False)
self.tgt_word_prj = nn.Linear(
d_model, self.out_channels, bias_attr=False)
w0 = np.random.normal(0.0, d_model**-0.5,
(d_model, dst_vocab_size)).astype(np.float32)
(d_model, self.out_channels)).astype(np.float32)
self.tgt_word_prj.weight.set_value(w0)
self.apply(self._init_weights)
......@@ -156,46 +157,41 @@ class Transformer(nn.Layer):
return self.forward_test(src)
def forward_test(self, src):
bs = src.shape[0]
bs = paddle.shape(src)[0]
if self.encoder is not None:
src = self.positional_encoding(src.transpose([1, 0, 2]))
src = self.positional_encoding(paddle.transpose(src, [1, 0, 2]))
memory = self.encoder(src)
else:
memory = src.squeeze(2).transpose([2, 0, 1])
memory = paddle.transpose(paddle.squeeze(src, 2), [2, 0, 1])
dec_seq = paddle.full((bs, 1), 2, dtype=paddle.int64)
dec_prob = paddle.full((bs, 1), 1., dtype=paddle.float32)
for len_dec_seq in range(1, 25):
src_enc = memory.clone()
tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
dec_seq_embed = self.embedding(dec_seq).transpose([1, 0, 2])
dec_seq_embed = paddle.transpose(self.embedding(dec_seq), [1, 0, 2])
dec_seq_embed = self.positional_encoding(dec_seq_embed)
tgt_mask = self.generate_square_subsequent_mask(dec_seq_embed.shape[
0])
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq_embed)[0])
output = self.decoder(
dec_seq_embed,
src_enc,
memory,
tgt_mask=tgt_mask,
memory_mask=None,
tgt_key_padding_mask=tgt_key_padding_mask,
tgt_key_padding_mask=None,
memory_key_padding_mask=None)
dec_output = output.transpose([1, 0, 2])
dec_output = dec_output[:,
-1, :] # Pick the last step: (bh * bm) * d_h
word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
word_prob = word_prob.reshape([1, bs, -1])
preds_idx = word_prob.argmax(axis=2)
dec_output = paddle.transpose(output, [1, 0, 2])
dec_output = dec_output[:, -1, :]
word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=1)
preds_idx = paddle.argmax(word_prob, axis=1)
if paddle.equal_all(
preds_idx[-1],
preds_idx,
paddle.full(
preds_idx[-1].shape, 3, dtype='int64')):
paddle.shape(preds_idx), 3, dtype='int64')):
break
preds_prob = word_prob.max(axis=2)
preds_prob = paddle.max(word_prob, axis=1)
dec_seq = paddle.concat(
[dec_seq, preds_idx.reshape([-1, 1])], axis=1)
return dec_seq
[dec_seq, paddle.reshape(preds_idx, [-1, 1])], axis=1)
dec_prob = paddle.concat(
[dec_prob, paddle.reshape(preds_prob, [-1, 1])], axis=1)
return [dec_seq, dec_prob]
def forward_beam(self, images):
''' Translation work in one batch '''
......@@ -211,14 +207,15 @@ class Transformer(nn.Layer):
n_prev_active_inst, n_bm):
''' Collect tensor parts associated to active instances. '''
_, *d_hs = beamed_tensor.shape
beamed_tensor_shape = paddle.shape(beamed_tensor)
n_curr_active_inst = len(curr_active_inst_idx)
new_shape = (n_curr_active_inst * n_bm, *d_hs)
new_shape = (n_curr_active_inst * n_bm, beamed_tensor_shape[1],
beamed_tensor_shape[2])
beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1])
beamed_tensor = beamed_tensor.index_select(
paddle.to_tensor(curr_active_inst_idx), axis=0)
beamed_tensor = beamed_tensor.reshape([*new_shape])
curr_active_inst_idx, axis=0)
beamed_tensor = beamed_tensor.reshape(new_shape)
return beamed_tensor
......@@ -249,44 +246,26 @@ class Transformer(nn.Layer):
b.get_current_state() for b in inst_dec_beams if not b.done
]
dec_partial_seq = paddle.stack(dec_partial_seq)
dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])
return dec_partial_seq
def prepare_beam_memory_key_padding_mask(
inst_dec_beams, memory_key_padding_mask, n_bm):
keep = []
for idx in (memory_key_padding_mask):
if not inst_dec_beams[idx].done:
keep.append(idx)
memory_key_padding_mask = memory_key_padding_mask[
paddle.to_tensor(keep)]
len_s = memory_key_padding_mask.shape[-1]
n_inst = memory_key_padding_mask.shape[0]
memory_key_padding_mask = paddle.concat(
[memory_key_padding_mask for i in range(n_bm)], axis=1)
memory_key_padding_mask = memory_key_padding_mask.reshape(
[n_inst * n_bm, len_s]) #repeat(1, n_bm)
return memory_key_padding_mask
def predict_word(dec_seq, enc_output, n_active_inst, n_bm,
memory_key_padding_mask):
tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
dec_seq = self.embedding(dec_seq).transpose([1, 0, 2])
dec_seq = paddle.transpose(self.embedding(dec_seq), [1, 0, 2])
dec_seq = self.positional_encoding(dec_seq)
tgt_mask = self.generate_square_subsequent_mask(dec_seq.shape[
0])
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq)[0])
dec_output = self.decoder(
dec_seq,
enc_output,
tgt_mask=tgt_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
).transpose([1, 0, 2])
tgt_key_padding_mask=None,
memory_key_padding_mask=memory_key_padding_mask, )
dec_output = paddle.transpose(dec_output, [1, 0, 2])
dec_output = dec_output[:,
-1, :] # Pick the last step: (bh * bm) * d_h
word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
word_prob = word_prob.reshape([n_active_inst, n_bm, -1])
word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=1)
word_prob = paddle.reshape(word_prob, [n_active_inst, n_bm, -1])
return word_prob
def collect_active_inst_idx_list(inst_beams, word_prob,
......@@ -302,9 +281,8 @@ class Transformer(nn.Layer):
n_active_inst = len(inst_idx_to_position_map)
dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
memory_key_padding_mask = None
word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm,
memory_key_padding_mask)
None)
# Update the beam with predicted word prob information and collect incomplete instances
active_inst_idx_list = collect_active_inst_idx_list(
inst_dec_beams, word_prob, inst_idx_to_position_map)
......@@ -324,27 +302,21 @@ class Transformer(nn.Layer):
with paddle.no_grad():
#-- Encode
if self.encoder is not None:
src = self.positional_encoding(images.transpose([1, 0, 2]))
src_enc = self.encoder(src).transpose([1, 0, 2])
src_enc = self.encoder(src)
else:
src_enc = images.squeeze(2).transpose([0, 2, 1])
#-- Repeat data for beam search
n_bm = self.beam_size
n_inst, len_s, d_h = src_enc.shape
src_enc = paddle.concat([src_enc for i in range(n_bm)], axis=1)
src_enc = src_enc.reshape([n_inst * n_bm, len_s, d_h]).transpose(
[1, 0, 2])
#-- Prepare beams
inst_dec_beams = [Beam(n_bm) for _ in range(n_inst)]
#-- Bookkeeping for active or not
active_inst_idx_list = list(range(n_inst))
src_shape = paddle.shape(src_enc)
inst_dec_beams = [Beam(n_bm) for _ in range(1)]
active_inst_idx_list = list(range(1))
# Repeat data for beam search
src_enc = paddle.tile(src_enc, [1, n_bm, 1])
inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
active_inst_idx_list)
#-- Decode
# Decode
for len_dec_seq in range(1, 25):
src_enc_copy = src_enc.clone()
active_inst_idx_list = beam_decode_step(
......@@ -358,10 +330,19 @@ class Transformer(nn.Layer):
batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams,
1)
result_hyp = []
for bs_hyp in batch_hyp:
bs_hyp_pad = bs_hyp[0] + [3] * (25 - len(bs_hyp[0]))
hyp_scores = []
for bs_hyp, score in zip(batch_hyp, batch_scores):
l = len(bs_hyp[0])
bs_hyp_pad = bs_hyp[0] + [3] * (25 - l)
result_hyp.append(bs_hyp_pad)
return paddle.to_tensor(np.array(result_hyp), dtype=paddle.int64)
score = float(score) / l
hyp_score = [score for _ in range(25)]
hyp_scores.append(hyp_score)
return [
paddle.to_tensor(
np.array(result_hyp), dtype=paddle.int64),
paddle.to_tensor(hyp_scores)
]
def generate_square_subsequent_mask(self, sz):
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
......@@ -376,7 +357,7 @@ class Transformer(nn.Layer):
return mask
def generate_padding_mask(self, x):
padding_mask = x.equal(paddle.to_tensor(0, dtype=x.dtype))
padding_mask = paddle.equal(x, paddle.to_tensor(0, dtype=x.dtype))
return padding_mask
def _reset_parameters(self):
......@@ -514,17 +495,17 @@ class TransformerEncoderLayer(nn.Layer):
src,
src,
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
key_padding_mask=src_key_padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
src = src.transpose([1, 2, 0])
src = paddle.transpose(src, [1, 2, 0])
src = paddle.unsqueeze(src, 2)
src2 = self.conv2(F.relu(self.conv1(src)))
src2 = paddle.squeeze(src2, 2)
src2 = src2.transpose([2, 0, 1])
src2 = paddle.transpose(src2, [2, 0, 1])
src = paddle.squeeze(src, 2)
src = src.transpose([2, 0, 1])
src = paddle.transpose(src, [2, 0, 1])
src = src + self.dropout2(src2)
src = self.norm2(src)
......@@ -598,7 +579,7 @@ class TransformerDecoderLayer(nn.Layer):
tgt,
tgt,
attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
key_padding_mask=tgt_key_padding_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(
......@@ -606,18 +587,18 @@ class TransformerDecoderLayer(nn.Layer):
memory,
memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
key_padding_mask=memory_key_padding_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# default
tgt = tgt.transpose([1, 2, 0])
tgt = paddle.transpose(tgt, [1, 2, 0])
tgt = paddle.unsqueeze(tgt, 2)
tgt2 = self.conv2(F.relu(self.conv1(tgt)))
tgt2 = paddle.squeeze(tgt2, 2)
tgt2 = tgt2.transpose([2, 0, 1])
tgt2 = paddle.transpose(tgt2, [2, 0, 1])
tgt = paddle.squeeze(tgt, 2)
tgt = tgt.transpose([2, 0, 1])
tgt = paddle.transpose(tgt, [2, 0, 1])
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
......@@ -656,8 +637,8 @@ class PositionalEncoding(nn.Layer):
(-math.log(10000.0) / dim))
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = pe.unsqueeze(0)
pe = pe.transpose([1, 0, 2])
pe = paddle.unsqueeze(pe, 0)
pe = paddle.transpose(pe, [1, 0, 2])
self.register_buffer('pe', pe)
def forward(self, x):
......@@ -670,7 +651,7 @@ class PositionalEncoding(nn.Layer):
Examples:
>>> output = pos_encoder(x)
"""
x = x + self.pe[:x.shape[0], :]
x = x + self.pe[:paddle.shape(x)[0], :]
return self.dropout(x)
......@@ -702,7 +683,7 @@ class PositionalEncoding_2d(nn.Layer):
(-math.log(10000.0) / dim))
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = pe.unsqueeze(0).transpose([1, 0, 2])
pe = paddle.transpose(paddle.unsqueeze(pe, 0), [1, 0, 2])
self.register_buffer('pe', pe)
self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))
......@@ -722,22 +703,23 @@ class PositionalEncoding_2d(nn.Layer):
Examples:
>>> output = pos_encoder(x)
"""
w_pe = self.pe[:x.shape[-1], :]
w_pe = self.pe[:paddle.shape(x)[-1], :]
w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
w_pe = w_pe * w1
w_pe = w_pe.transpose([1, 2, 0])
w_pe = w_pe.unsqueeze(2)
w_pe = paddle.transpose(w_pe, [1, 2, 0])
w_pe = paddle.unsqueeze(w_pe, 2)
h_pe = self.pe[:x.shape[-2], :]
h_pe = self.pe[:paddle.shape(x).shape[-2], :]
w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
h_pe = h_pe * w2
h_pe = h_pe.transpose([1, 2, 0])
h_pe = h_pe.unsqueeze(3)
h_pe = paddle.transpose(h_pe, [1, 2, 0])
h_pe = paddle.unsqueeze(h_pe, 3)
x = x + w_pe + h_pe
x = x.reshape(
[x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]).transpose(
[2, 0, 1])
x = paddle.transpose(
paddle.reshape(x,
[x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]),
[2, 0, 1])
return self.dropout(x)
......@@ -817,7 +799,7 @@ class Beam():
def sort_scores(self):
"Sort the scores."
return self.scores, paddle.to_tensor(
[i for i in range(self.scores.shape[0])], dtype='int32')
[i for i in range(int(self.scores.shape[0]))], dtype='int32')
def get_the_best_score_and_idx(self):
"Get the score of the best in the beam."
......
......@@ -169,15 +169,20 @@ class NRTRLabelDecode(BaseRecLabelDecode):
character_type, use_space_char)
def __call__(self, preds, label=None, *args, **kwargs):
if preds.dtype == paddle.int64:
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
if preds[0][0] == 2:
preds_idx = preds[:, 1:]
else:
preds_idx = preds
text = self.decode(preds_idx)
if len(preds) == 2:
preds_id = preds[0]
preds_prob = preds[1]
if isinstance(preds_id, paddle.Tensor):
preds_id = preds_id.numpy()
if isinstance(preds_prob, paddle.Tensor):
preds_prob = preds_prob.numpy()
if preds_id[0][0] == 2:
preds_idx = preds_id[:, 1:]
preds_prob = preds_prob[:, 1:]
else:
preds_idx = preds_id
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
if label is None:
return text
label = self.decode(label[:, 1:])
......
......@@ -60,6 +60,8 @@ def export_single_model(model, arch_config, save_path, logger):
"When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
)
infer_shape[-1] = 100
if arch_config["algorithm"] == "NRTR":
infer_shape = [1, 32, 100]
elif arch_config["model_type"] == "table":
infer_shape = [3, 488, 488]
model = to_static(
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import os
import sys
from PIL import Image
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
......@@ -61,6 +61,13 @@ class TextRecognizer(object):
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
elif self.rec_algorithm == 'NRTR':
postprocess_params = {
'name': 'NRTRLabelDecode',
"character_type": args.rec_char_type,
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'rec', logger)
......@@ -87,6 +94,30 @@ class TextRecognizer(object):
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
if imgC == 1:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# h = img.shape[0]
# w = img.shape[1]
# ratio = w / float(h)
# if math.ceil(imgH * ratio) > imgW:
# resized_w = imgW
# else:
# resized_w = int(math.ceil(imgH * ratio))
# resized_image = cv2.resize(img, (resized_w, imgH))
# #norm_img = np.expand_dims(resized_image, -1)
# #norm_img = norm_img.transpose((2, 0, 1))
# resized_image = resized_image.astype(np.float32) / 128. - 1.
# padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
# padding_im[0, :, 0:resized_w] = resized_image
# return padding_im
image_pil = Image.fromarray(np.uint8(img))
img = image_pil.resize([100, 32], Image.ANTIALIAS)
img = np.array(img)
norm_img = np.expand_dims(img, -1)
norm_img = norm_img.transpose((2, 0, 1))
return norm_img.astype(np.float32) / 128. - 1.
assert imgC == img.shape[2]
max_wh_ratio = max(max_wh_ratio, imgW / imgH)
imgW = int((32 * max_wh_ratio))
......@@ -252,14 +283,16 @@ class TextRecognizer(object):
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs[0]
if len(outputs) != 1:
preds = outputs
else:
preds = outputs[0]
rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册