predict_rec.py 11.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
W
WenmuZhou 已提交
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
W
WenmuZhou 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
34

W
WenmuZhou 已提交
35 36
logger = get_logger()

L
LDOUBLEV 已提交
37 38 39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
41
        self.character_type = args.rec_char_type
42
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
43
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
44 45
        postprocess_params = {
            'name': 'CTCLabelDecode',
T
tink2123 已提交
46
            "character_type": args.rec_char_type,
47
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
48
            "use_space_char": args.use_space_char
T
tink2123 已提交
49
        }
T
tink2123 已提交
50 51 52
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
53 54 55 56 57 58 59
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
60 61 62 63
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
64
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
65
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
W
WenmuZhou 已提交
66
            utility.create_predictor(args, 'rec', logger)
T
tink2123 已提交
67 68 69 70 71 72 73
        self.benchmark = args.benchmark
        if args.benchmark:
            import auto_log
            pid = os.getpid()
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
T
tink2123 已提交
74
                batch_size=args.rec_batch_num,
T
tink2123 已提交
75
                data_shape="dynamic",
76
                save_path=None,  #args.save_log_path,
T
tink2123 已提交
77 78 79 80 81 82 83
                inference_config=self.config,
                pids=pid,
                process_name=None,
                gpu_ids=0 if args.use_gpu else None,
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
84 85
                warmup=2,
                logger=logger)
L
LDOUBLEV 已提交
86

87
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
88
        imgC, imgH, imgW = self.rec_image_shape
89
        assert imgC == img.shape[2]
90
        if self.character_type == "ch":
T
tink2123 已提交
91
            imgW = int((32 * max_wh_ratio))
92
        h, w = img.shape[:2]
93 94 95 96 97
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
98
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
99 100 101 102 103 104 105 106
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

T
tink2123 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

L
LDOUBLEV 已提交
179 180
    def __call__(self, img_list):
        img_num = len(img_list)
181
        # Calculate the aspect ratio of all text bars
182 183 184
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
185
        # Sorting can speed up the recognition process
186 187
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
188
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
189
        st = time.time()
T
tink2123 已提交
190 191
        if self.benchmark:
            self.autolog.times.start()
L
LDOUBLEV 已提交
192 193 194
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
195
            max_wh_ratio = 0
L
LDOUBLEV 已提交
196
            for ino in range(beg_img_no, end_img_no):
197
                h, w = img_list[indices[ino]].shape[0:2]
198 199 200
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
201 202 203 204 205 206
                if self.rec_algorithm != "SRN":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
L
LDOUBLEV 已提交
207 208
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
T
tink2123 已提交
209 210 211 212 213 214 215 216 217
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
L
LDOUBLEV 已提交
218 219
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
220 221
            if self.benchmark:
                self.autolog.times.stamp()
T
tink2123 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
T
tink2123 已提交
248 249
                if self.benchmark:
                    self.autolog.times.stamp()
T
tink2123 已提交
250 251 252 253 254 255 256 257 258
                preds = {"predict": outputs[2]}
            else:
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()

                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
T
tink2123 已提交
259 260
                if self.benchmark:
                    self.autolog.times.stamp()
T
tink2123 已提交
261
                preds = outputs[0]
W
WenmuZhou 已提交
262 263 264
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
T
tink2123 已提交
265 266
            if self.benchmark:
                self.autolog.times.end(stamp=True)
L
LDOUBLEV 已提交
267
        return rec_res, time.time() - st
L
LDOUBLEV 已提交
268 269


270
def main(args):
D
dyning 已提交
271
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
272 273 274
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
L
LDOUBLEV 已提交
275

276
    # warmup 2 times
L
LDOUBLEV 已提交
277 278
    if args.warmup:
        img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
279
        for i in range(2):
L
LDOUBLEV 已提交
280 281
            res = text_recognizer([img])

L
LDOUBLEV 已提交
282
    for image_file in image_file_list:
L
LDOUBLEV 已提交
283 284 285
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
286 287 288 289 290
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
LDOUBLEV 已提交
291 292 293 294 295 296 297 298 299 300
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
T
tink2123 已提交
301 302
    if args.benchmark:
        text_recognizer.autolog.report()
303 304 305 306


if __name__ == "__main__":
    main(utility.parse_args())