predict_rec.py 16.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
T
Topdu 已提交
16
from PIL import Image
17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey 已提交
19
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
W
WenmuZhou 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
34

W
WenmuZhou 已提交
35 36
logger = get_logger()

L
LDOUBLEV 已提交
37 38 39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
42
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
43 44
        postprocess_params = {
            'name': 'CTCLabelDecode',
45
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
46
            "use_space_char": args.use_space_char
T
tink2123 已提交
47
        }
T
tink2123 已提交
48 49 50
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
51 52 53 54 55 56
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
57 58 59
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
60 61 62 63 64 65
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
66 67 68 69 70 71
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
72
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
73
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
W
WenmuZhou 已提交
74
            utility.create_predictor(args, 'rec', logger)
T
tink2123 已提交
75
        self.benchmark = args.benchmark
T
tink2123 已提交
76
        self.use_onnx = args.use_onnx
T
tink2123 已提交
77 78 79
        if args.benchmark:
            import auto_log
            pid = os.getpid()
L
LDOUBLEV 已提交
80
            gpu_id = utility.get_infer_gpuid()
T
tink2123 已提交
81 82 83
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
T
tink2123 已提交
84
                batch_size=args.rec_batch_num,
T
tink2123 已提交
85
                data_shape="dynamic",
86
                save_path=None,  #args.save_log_path,
T
tink2123 已提交
87 88 89
                inference_config=self.config,
                pids=pid,
                process_name=None,
L
LDOUBLEV 已提交
90
                gpu_ids=gpu_id if args.use_gpu else None,
T
tink2123 已提交
91 92 93
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
T
tink2123 已提交
94
                warmup=0,
95
                logger=logger)
L
LDOUBLEV 已提交
96

97
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
98
        imgC, imgH, imgW = self.rec_image_shape
T
Topdu 已提交
99
        if self.rec_algorithm == 'NRTR':
T
Topdu 已提交
100 101 102 103 104 105 106 107 108
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize([100, 32], Image.ANTIALIAS)
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            return norm_img.astype(np.float32) / 128. - 1.

109
        assert imgC == img.shape[2]
T
tink2123 已提交
110
        imgW = int((32 * max_wh_ratio))
T
tink2123 已提交
111
        if self.use_onnx:
112 113 114 115
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

116
        h, w = img.shape[:2]
117 118 119 120 121
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
A
andyjpaddle 已提交
122 123 124 125
        if self.rec_algorithm == 'RARE':
            if resized_w > self.rec_image_shape[2]:
                resized_w = self.rec_image_shape[2]
            imgW = self.rec_image_shape[2]
T
tink2123 已提交
126
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
127 128 129 130 131 132 133 134
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

T
tink2123 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

T
Topdu 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

L
LDOUBLEV 已提交
242 243
    def __call__(self, img_list):
        img_num = len(img_list)
244
        # Calculate the aspect ratio of all text bars
245 246 247
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
248
        # Sorting can speed up the recognition process
249 250
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
251
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
252
        st = time.time()
T
tink2123 已提交
253 254
        if self.benchmark:
            self.autolog.times.start()
L
LDOUBLEV 已提交
255 256 257
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
258
            max_wh_ratio = 0
L
LDOUBLEV 已提交
259
            for ino in range(beg_img_no, end_img_no):
260
                h, w = img_list[indices[ino]].shape[0:2]
261 262 263
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
Topdu 已提交
264
                if self.rec_algorithm != "SRN" and self.rec_algorithm != "SAR":
T
tink2123 已提交
265 266 267 268
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
T
Topdu 已提交
269 270 271 272 273 274 275 276
                elif self.rec_algorithm == "SAR":
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
T
tink2123 已提交
277
                else:
L
LDOUBLEV 已提交
278 279
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
T
tink2123 已提交
280 281 282 283 284 285 286 287 288
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
L
LDOUBLEV 已提交
289 290
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
291 292
            if self.benchmark:
                self.autolog.times.stamp()
T
tink2123 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
T
tink2123 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = {"predict": outputs[2]}
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = {"predict": outputs[2]}
T
Topdu 已提交
329 330 331 332 333 334
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
                    valid_ratios,
                ]
T
tink2123 已提交
335 336 337 338 339 340
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
T
Topdu 已提交
341
                else:
T
tink2123 已提交
342 343 344 345 346 347 348 349 350 351 352 353
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
T
Topdu 已提交
354
                    preds = outputs[0]
T
tink2123 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
            else:
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    if len(outputs) != 1:
                        preds = outputs
                    else:
                        preds = outputs[0]
W
WenmuZhou 已提交
375 376 377
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
T
tink2123 已提交
378 379
            if self.benchmark:
                self.autolog.times.end(stamp=True)
L
LDOUBLEV 已提交
380
        return rec_res, time.time() - st
L
LDOUBLEV 已提交
381 382


383
def main(args):
D
dyning 已提交
384
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
385 386 387
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
L
LDOUBLEV 已提交
388

389
    # warmup 2 times
L
LDOUBLEV 已提交
390 391
    if args.warmup:
        img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
392
        for i in range(2):
L
LDOUBLEV 已提交
393
            res = text_recognizer([img] * int(args.rec_batch_num))
L
LDOUBLEV 已提交
394

L
LDOUBLEV 已提交
395
    for image_file in image_file_list:
L
LDOUBLEV 已提交
396 397 398
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
399 400 401 402 403
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
LDOUBLEV 已提交
404 405 406 407 408 409 410 411 412 413
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
T
tink2123 已提交
414 415
    if args.benchmark:
        text_recognizer.autolog.report()
416 417 418 419


if __name__ == "__main__":
    main(utility.parse_args())