Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
eeef62b3
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
1 年多 前同步成功
通知
1535
Star
32963
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eeef62b3
编写于
10月 08, 2022
作者:
littletomatodonkey
提交者:
GitHub
10月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix PREN export and infer (#7833)
上级
077196f3
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
177 addition
and
123 deletion
+177
-123
ppocr/modeling/backbones/rec_efficientb3_pren.py
ppocr/modeling/backbones/rec_efficientb3_pren.py
+171
-120
ppocr/postprocess/rec_postprocess.py
ppocr/postprocess/rec_postprocess.py
+2
-1
tools/export_model.py
tools/export_model.py
+1
-1
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+3
-1
未找到文件。
ppocr/modeling/backbones/rec_efficientb3_pren.py
浏览文件 @
eeef62b3
...
...
@@ -21,124 +21,165 @@ from __future__ import division
from
__future__
import
print_function
import
math
from
collections
import
namedtuple
import
re
import
collections
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
__all__
=
[
'EfficientNetb3'
]
GlobalParams
=
collections
.
namedtuple
(
'GlobalParams'
,
[
'batch_norm_momentum'
,
'batch_norm_epsilon'
,
'dropout_rate'
,
'num_classes'
,
'width_coefficient'
,
'depth_coefficient'
,
'depth_divisor'
,
'min_depth'
,
'drop_connect_rate'
,
'image_size'
])
class
EffB3Params
:
BlockArgs
=
collections
.
namedtuple
(
'BlockArgs'
,
[
'kernel_size'
,
'num_repeat'
,
'input_filters'
,
'output_filters'
,
'expand_ratio'
,
'id_skip'
,
'stride'
,
'se_ratio'
])
class
BlockDecoder
:
@
staticmethod
def
get_global_params
():
"""
The fllowing are efficientnetb3's arch superparams, but to fit for scene
text recognition task, the resolution(image_size) here is changed
from 300 to 64.
"""
GlobalParams
=
namedtuple
(
'GlobalParams'
,
[
'drop_connect_rate'
,
'width_coefficient'
,
'depth_coefficient'
,
'depth_divisor'
,
'image_size'
])
global_params
=
GlobalParams
(
drop_connect_rate
=
0.3
,
width_coefficient
=
1.2
,
depth_coefficient
=
1.4
,
depth_divisor
=
8
,
image_size
=
64
)
return
global_params
def
_decode_block_string
(
block_string
):
assert
isinstance
(
block_string
,
str
)
ops
=
block_string
.
split
(
'_'
)
options
=
{}
for
op
in
ops
:
splits
=
re
.
split
(
r
'(\d.*)'
,
op
)
if
len
(
splits
)
>=
2
:
key
,
value
=
splits
[:
2
]
options
[
key
]
=
value
assert
((
's'
in
options
and
len
(
options
[
's'
])
==
1
)
or
(
len
(
options
[
's'
])
==
2
and
options
[
's'
][
0
]
==
options
[
's'
][
1
]))
return
BlockArgs
(
kernel_size
=
int
(
options
[
'k'
]),
num_repeat
=
int
(
options
[
'r'
]),
input_filters
=
int
(
options
[
'i'
]),
output_filters
=
int
(
options
[
'o'
]),
expand_ratio
=
int
(
options
[
'e'
]),
id_skip
=
(
'noskip'
not
in
block_string
),
se_ratio
=
float
(
options
[
'se'
])
if
'se'
in
options
else
None
,
stride
=
[
int
(
options
[
's'
][
0
])])
@
staticmethod
def
get_block_params
():
BlockParams
=
namedtuple
(
'BlockParams'
,
[
'kernel_size'
,
'num_repeat'
,
'input_filters'
,
'output_filters'
,
'expand_ratio'
,
'id_skip'
,
'se_ratio'
,
'stride'
])
block_params
=
[
BlockParams
(
3
,
1
,
32
,
16
,
1
,
True
,
0.25
,
1
),
BlockParams
(
3
,
2
,
16
,
24
,
6
,
True
,
0.25
,
2
),
BlockParams
(
5
,
2
,
24
,
40
,
6
,
True
,
0.25
,
2
),
BlockParams
(
3
,
3
,
40
,
80
,
6
,
True
,
0.25
,
2
),
BlockParams
(
5
,
3
,
80
,
112
,
6
,
True
,
0.25
,
1
),
BlockParams
(
5
,
4
,
112
,
192
,
6
,
True
,
0.25
,
2
),
BlockParams
(
3
,
1
,
192
,
320
,
6
,
True
,
0.25
,
1
)
]
return
block_params
def
decode
(
string_list
):
assert
isinstance
(
string_list
,
list
)
blocks_args
=
[]
for
block_string
in
string_list
:
blocks_args
.
append
(
BlockDecoder
.
_decode_block_string
(
block_string
))
return
blocks_args
def
efficientnet
(
width_coefficient
=
None
,
depth_coefficient
=
None
,
dropout_rate
=
0.2
,
drop_connect_rate
=
0.2
,
image_size
=
None
,
num_classes
=
1000
):
blocks_args
=
[
'r1_k3_s11_e1_i32_o16_se0.25'
,
'r2_k3_s22_e6_i16_o24_se0.25'
,
'r2_k5_s22_e6_i24_o40_se0.25'
,
'r3_k3_s22_e6_i40_o80_se0.25'
,
'r3_k5_s11_e6_i80_o112_se0.25'
,
'r4_k5_s22_e6_i112_o192_se0.25'
,
'r1_k3_s11_e6_i192_o320_se0.25'
,
]
blocks_args
=
BlockDecoder
.
decode
(
blocks_args
)
global_params
=
GlobalParams
(
batch_norm_momentum
=
0.99
,
batch_norm_epsilon
=
1e-3
,
dropout_rate
=
dropout_rate
,
drop_connect_rate
=
drop_connect_rate
,
num_classes
=
num_classes
,
width_coefficient
=
width_coefficient
,
depth_coefficient
=
depth_coefficient
,
depth_divisor
=
8
,
min_depth
=
None
,
image_size
=
image_size
,
)
return
blocks_args
,
global_params
class
EffUtils
:
@
staticmethod
def
round_filters
(
filters
,
global_params
):
"""
Calculate and round number of filters based on depth multiplier.
"""
"""
Calculate and round number of filters based on depth multiplier.
"""
multiplier
=
global_params
.
width_coefficient
if
not
multiplier
:
return
filters
divisor
=
global_params
.
depth_divisor
min_depth
=
global_params
.
min_depth
filters
*=
multiplier
new_filters
=
int
(
filters
+
divisor
/
2
)
//
divisor
*
divisor
min_depth
=
min_depth
or
divisor
new_filters
=
max
(
min_depth
,
int
(
filters
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_filters
<
0.9
*
filters
:
new_filters
+=
divisor
return
int
(
new_filters
)
@
staticmethod
def
round_repeats
(
repeats
,
global_params
):
"""
Round number of filters based on depth multiplier.
"""
"""
Round number of filters based on depth multiplier.
"""
multiplier
=
global_params
.
depth_coefficient
if
not
multiplier
:
return
repeats
return
int
(
math
.
ceil
(
multiplier
*
repeats
))
class
ConvBlock
(
nn
.
Layer
):
def
__init__
(
self
,
block_
param
s
):
super
(
ConvBlock
,
self
).
__init__
()
self
.
block_args
=
block_param
s
self
.
has_se
=
(
self
.
block_args
.
se_ratio
is
not
None
)
and
\
(
0
<
self
.
block_args
.
se_ratio
<=
1
)
self
.
id_skip
=
block_
param
s
.
id_skip
class
Mb
ConvBlock
(
nn
.
Layer
):
def
__init__
(
self
,
block_
arg
s
):
super
(
Mb
ConvBlock
,
self
).
__init__
()
self
.
_block_args
=
block_arg
s
self
.
has_se
=
(
self
.
_
block_args
.
se_ratio
is
not
None
)
and
\
(
0
<
self
.
_
block_args
.
se_ratio
<=
1
)
self
.
id_skip
=
block_
arg
s
.
id_skip
# expansion phase
self
.
input_filters
=
self
.
block_args
.
input_filters
output_filters
=
\
self
.
block_args
.
input_filters
*
self
.
block_args
.
expand_ratio
if
self
.
block_args
.
expand_ratio
!=
1
:
self
.
expand_conv
=
nn
.
Conv2D
(
self
.
input_filters
,
output_filters
,
1
,
bias_attr
=
False
)
self
.
bn0
=
nn
.
BatchNorm
(
output_filters
)
self
.
inp
=
self
.
_block_args
.
input_filters
oup
=
self
.
_block_args
.
input_filters
*
self
.
_block_args
.
expand_ratio
if
self
.
_block_args
.
expand_ratio
!=
1
:
self
.
_expand_conv
=
nn
.
Conv2D
(
self
.
inp
,
oup
,
1
,
bias_attr
=
False
)
self
.
_bn0
=
nn
.
BatchNorm
(
oup
)
# depthwise conv phase
k
=
self
.
block_args
.
kernel_size
s
=
self
.
block_args
.
stride
self
.
depthwise_conv
=
nn
.
Conv2D
(
output_filters
,
output_filters
,
groups
=
output_filters
,
k
=
self
.
_block_args
.
kernel_size
s
=
self
.
_block_args
.
stride
if
isinstance
(
s
,
list
):
s
=
s
[
0
]
self
.
_depthwise_conv
=
nn
.
Conv2D
(
oup
,
oup
,
groups
=
oup
,
kernel_size
=
k
,
stride
=
s
,
padding
=
'same'
,
bias_attr
=
False
)
self
.
bn1
=
nn
.
BatchNorm
(
output_filters
)
self
.
_bn1
=
nn
.
BatchNorm
(
oup
)
# squeeze and excitation layer, if desired
if
self
.
has_se
:
num_squeezed_channels
=
max
(
1
,
int
(
self
.
block_args
.
input_filters
*
self
.
block_args
.
se_ratio
))
self
.
se_reduce
=
nn
.
Conv2D
(
output_filters
,
num_squeezed_channels
,
1
)
self
.
se_expand
=
nn
.
Conv2D
(
num_squeezed_channels
,
output_filters
,
1
)
# output phase
self
.
final_oup
=
self
.
block_args
.
output_filters
self
.
project_conv
=
nn
.
Conv2D
(
output_filters
,
self
.
final_oup
,
1
,
bias_attr
=
False
)
self
.
bn2
=
nn
.
BatchNorm
(
self
.
final_oup
)
self
.
swish
=
nn
.
Swish
()
def
drop_connect
(
self
,
inputs
,
p
,
training
):
int
(
self
.
_block_args
.
input_filters
*
self
.
_block_args
.
se_ratio
))
self
.
_se_reduce
=
nn
.
Conv2D
(
oup
,
num_squeezed_channels
,
1
)
self
.
_se_expand
=
nn
.
Conv2D
(
num_squeezed_channels
,
oup
,
1
)
# output phase and some util class
self
.
final_oup
=
self
.
_block_args
.
output_filters
self
.
_project_conv
=
nn
.
Conv2D
(
oup
,
self
.
final_oup
,
1
,
bias_attr
=
False
)
self
.
_bn2
=
nn
.
BatchNorm
(
self
.
final_oup
)
self
.
_swish
=
nn
.
Swish
()
def
_drop_connect
(
self
,
inputs
,
p
,
training
):
if
not
training
:
return
inputs
batch_size
=
inputs
.
shape
[
0
]
keep_prob
=
1
-
p
random_tensor
=
keep_prob
...
...
@@ -151,22 +192,23 @@ class ConvBlock(nn.Layer):
def
forward
(
self
,
inputs
,
drop_connect_rate
=
None
):
# expansion and depthwise conv
x
=
inputs
if
self
.
block_args
.
expand_ratio
!=
1
:
x
=
self
.
swish
(
self
.
bn0
(
self
.
expand_conv
(
inputs
)))
x
=
self
.
swish
(
self
.
bn1
(
self
.
depthwise_conv
(
x
)))
if
self
.
_
block_args
.
expand_ratio
!=
1
:
x
=
self
.
_swish
(
self
.
_bn0
(
self
.
_
expand_conv
(
inputs
)))
x
=
self
.
_swish
(
self
.
_bn1
(
self
.
_
depthwise_conv
(
x
)))
# squeeze and excitation
if
self
.
has_se
:
x_squeezed
=
F
.
adaptive_avg_pool2d
(
x
,
1
)
x_squeezed
=
self
.
se_expand
(
self
.
swish
(
self
.
se_reduce
(
x_squeezed
)))
x_squeezed
=
self
.
_se_expand
(
self
.
_swish
(
self
.
_se_reduce
(
x_squeezed
)))
x
=
F
.
sigmoid
(
x_squeezed
)
*
x
x
=
self
.
bn2
(
self
.
project_conv
(
x
))
x
=
self
.
_bn2
(
self
.
_
project_conv
(
x
))
# skip conntection and drop connect
if
self
.
id_skip
and
self
.
block_args
.
stride
==
1
and
\
self
.
inp
ut_filters
==
self
.
final_oup
:
if
self
.
id_skip
and
self
.
_
block_args
.
stride
==
1
and
\
self
.
inp
==
self
.
final_oup
:
if
drop_connect_rate
:
x
=
self
.
drop_connect
(
x
=
self
.
_
drop_connect
(
x
,
p
=
drop_connect_rate
,
training
=
self
.
training
)
x
=
x
+
inputs
return
x
...
...
@@ -175,54 +217,63 @@ class ConvBlock(nn.Layer):
class
EfficientNetb3_PREN
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
):
super
(
EfficientNetb3_PREN
,
self
).
__init__
()
self
.
blocks_params
=
EffB3Params
.
get_block_params
()
self
.
global_params
=
EffB3Params
.
get_global_params
()
"""
the fllowing are efficientnetb3's superparams,
they means efficientnetb3 network's width, depth, resolution and
dropout respectively, to fit for text recognition task, the resolution
here is changed from 300 to 64.
"""
w
,
d
,
s
,
p
=
1.2
,
1.4
,
64
,
0.3
self
.
_blocks_args
,
self
.
_global_params
=
efficientnet
(
width_coefficient
=
w
,
depth_coefficient
=
d
,
dropout_rate
=
p
,
image_size
=
s
)
self
.
out_channels
=
[]
# stem
stem_channels
=
EffUtils
.
round_filters
(
32
,
self
.
global_params
)
self
.
conv_stem
=
nn
.
Conv2D
(
in_channels
,
stem
_channels
,
3
,
2
,
padding
=
'same'
,
bias_attr
=
False
)
self
.
bn0
=
nn
.
BatchNorm
(
stem
_channels
)
out_channels
=
EffUtils
.
round_filters
(
32
,
self
.
_
global_params
)
self
.
_
conv_stem
=
nn
.
Conv2D
(
in_channels
,
out
_channels
,
3
,
2
,
padding
=
'same'
,
bias_attr
=
False
)
self
.
_bn0
=
nn
.
BatchNorm
(
out
_channels
)
self
.
blocks
=
[]
# build blocks
self
.
_blocks
=
[]
# to extract three feature maps for fpn based on efficientnetb3 backbone
self
.
concerned_block_idxes
=
[
7
,
17
,
25
]
concerned_idx
=
0
for
i
,
block_params
in
enumerate
(
self
.
blocks_params
):
block_params
=
block_params
.
_replace
(
input_filters
=
EffUtils
.
round_filters
(
block_params
.
input_filters
,
self
.
global_params
),
output_filters
=
EffUtils
.
round_filters
(
block_params
.
output_filters
,
self
.
global_params
),
num_repeat
=
EffUtils
.
round_repeats
(
block_params
.
num_repeat
,
self
.
global_params
))
self
.
blocks
.
append
(
self
.
add_sublayer
(
"{}-0"
.
format
(
i
),
ConvBlock
(
block_params
)))
concerned_idx
+=
1
if
concerned_idx
in
self
.
concerned_block_idxes
:
self
.
out_channels
.
append
(
block_params
.
output_filters
)
if
block_params
.
num_repeat
>
1
:
block_params
=
block_params
.
_replace
(
input_filters
=
block_params
.
output_filters
,
stride
=
1
)
for
j
in
range
(
block_params
.
num_repeat
-
1
):
self
.
blocks
.
append
(
self
.
add_sublayer
(
'{}-{}'
.
format
(
i
,
j
+
1
),
ConvBlock
(
block_params
)))
concerned_idx
+=
1
if
concerned_idx
in
self
.
concerned_block_idxes
:
self
.
out_channels
.
append
(
block_params
.
output_filters
)
self
.
swish
=
nn
.
Swish
()
self
.
_concerned_block_idxes
=
[
7
,
17
,
25
]
_concerned_idx
=
0
for
i
,
block_args
in
enumerate
(
self
.
_blocks_args
):
block_args
=
block_args
.
_replace
(
input_filters
=
EffUtils
.
round_filters
(
block_args
.
input_filters
,
self
.
_global_params
),
output_filters
=
EffUtils
.
round_filters
(
block_args
.
output_filters
,
self
.
_global_params
),
num_repeat
=
EffUtils
.
round_repeats
(
block_args
.
num_repeat
,
self
.
_global_params
))
self
.
_blocks
.
append
(
self
.
add_sublayer
(
f
"
{
i
}
-0"
,
MbConvBlock
(
block_args
)))
_concerned_idx
+=
1
if
_concerned_idx
in
self
.
_concerned_block_idxes
:
self
.
out_channels
.
append
(
block_args
.
output_filters
)
if
block_args
.
num_repeat
>
1
:
block_args
=
block_args
.
_replace
(
input_filters
=
block_args
.
output_filters
,
stride
=
1
)
for
j
in
range
(
block_args
.
num_repeat
-
1
):
self
.
_blocks
.
append
(
self
.
add_sublayer
(
f
'
{
i
}
-
{
j
+
1
}
'
,
MbConvBlock
(
block_args
)))
_concerned_idx
+=
1
if
_concerned_idx
in
self
.
_concerned_block_idxes
:
self
.
out_channels
.
append
(
block_args
.
output_filters
)
self
.
_swish
=
nn
.
Swish
()
def
forward
(
self
,
inputs
):
outs
=
[]
x
=
self
.
swish
(
self
.
bn0
(
self
.
conv_stem
(
inputs
)))
for
idx
,
block
in
enumerate
(
self
.
blocks
):
drop_connect_rate
=
self
.
global_params
.
drop_connect_rate
x
=
self
.
_swish
(
self
.
_bn0
(
self
.
_conv_stem
(
inputs
)))
for
idx
,
block
in
enumerate
(
self
.
_blocks
):
drop_connect_rate
=
self
.
_global_params
.
drop_connect_rate
if
drop_connect_rate
:
drop_connect_rate
*=
float
(
idx
)
/
len
(
self
.
blocks
)
drop_connect_rate
*=
float
(
idx
)
/
len
(
self
.
_
blocks
)
x
=
block
(
x
,
drop_connect_rate
=
drop_connect_rate
)
if
idx
in
self
.
concerned_block_idxes
:
if
idx
in
self
.
_
concerned_block_idxes
:
outs
.
append
(
x
)
return
outs
ppocr/postprocess/rec_postprocess.py
浏览文件 @
eeef62b3
...
...
@@ -562,7 +562,8 @@ class PRENLabelDecode(BaseRecLabelDecode):
return
result_list
def
__call__
(
self
,
preds
,
label
=
None
,
*
args
,
**
kwargs
):
preds
=
preds
.
numpy
()
if
isinstance
(
preds
,
paddle
.
Tensor
):
preds
=
preds
.
numpy
()
preds_idx
=
preds
.
argmax
(
axis
=
2
)
preds_prob
=
preds
.
max
(
axis
=
2
)
text
=
self
.
decode
(
preds_idx
,
preds_prob
)
...
...
tools/export_model.py
浏览文件 @
eeef62b3
...
...
@@ -77,7 +77,7 @@ def export_single_model(model,
elif
arch_config
[
"algorithm"
]
==
"PREN"
:
other_shape
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
3
,
64
,
512
],
dtype
=
"float32"
),
shape
=
[
None
,
3
,
64
,
256
],
dtype
=
"float32"
),
]
model
=
to_static
(
model
,
input_spec
=
other_shape
)
elif
arch_config
[
"model_type"
]
==
"sr"
:
...
...
tools/infer/predict_rec.py
浏览文件 @
eeef62b3
...
...
@@ -100,6 +100,8 @@ class TextRecognizer(object):
"use_space_char"
:
args
.
use_space_char
,
"rm_symbol"
:
True
}
elif
self
.
rec_algorithm
==
"PREN"
:
postprocess_params
=
{
'name'
:
'PRENLabelDecode'
}
self
.
postprocess_op
=
build_post_process
(
postprocess_params
)
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
self
.
config
=
\
utility
.
create_predictor
(
args
,
'rec'
,
logger
)
...
...
@@ -384,7 +386,7 @@ class TextRecognizer(object):
self
.
rec_image_shape
)
norm_img
=
norm_img
[
np
.
newaxis
,
:]
norm_img_batch
.
append
(
norm_img
)
elif
self
.
rec_algorithm
==
"VisionLAN"
:
elif
self
.
rec_algorithm
in
[
"VisionLAN"
,
"PREN"
]
:
norm_img
=
self
.
resize_norm_img_vl
(
img_list
[
indices
[
ino
]],
self
.
rec_image_shape
)
norm_img
=
norm_img
[
np
.
newaxis
,
:]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录