infer.py 30.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
Q
qingqing01 已提交
18 19 20 21
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
22
import math
Q
qingqing01 已提交
23 24 25 26
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

27
from benchmark_utils import PaddleInferBenchmark
28
from picodet_postprocess import PicoDetPostProcess
W
wangguanzhong 已提交
29
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine
G
Guanghua Yu 已提交
30
from visualize import visualize_box_mask
31
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
32

Q
qingqing01 已提交
33 34 35 36 37
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
38
    'Face',
F
Feng Ni 已提交
39
    'FCOS',
G
Guanghua Yu 已提交
40
    'SOLOv2',
F
Feng Ni 已提交
41
    'TTFNet',
C
cnn 已提交
42
    'S2ANet',
G
George Ni 已提交
43 44 45
    'JDE',
    'FairMOT',
    'DeepSORT',
G
Guanghua Yu 已提交
46 47
    'GFL',
    'PicoDet',
W
wangguanzhong 已提交
48
    'CenterNet',
S
shangliang Xu 已提交
49
    'TOOD',
Q
qingqing01 已提交
50 51 52 53 54 55
}


class Detector(object):
    """
    Args:
56
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
57
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
58
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
Q
qingqing01 已提交
59
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
60
        batch_size (int): size of pre batch in inference
61 62 63
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
64 65 66 67
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
Q
qingqing01 已提交
68 69 70 71 72
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
73
                 device='CPU',
Q
qingqing01 已提交
74
                 run_mode='fluid',
75
                 batch_size=1,
76 77 78
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
79 80 81
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
82
        self.pred_config = pred_config
83
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
84 85
            model_dir,
            run_mode=run_mode,
86
            batch_size=batch_size,
Q
qingqing01 已提交
87
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
88
            device=device,
89
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
90 91
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
92
            trt_opt_shape=trt_opt_shape,
93 94 95
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
96 97
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
98

C
cnn 已提交
99
    def preprocess(self, image_list):
Q
qingqing01 已提交
100 101 102 103 104
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
105 106 107 108

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
109
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
110 111 112
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
Q
qingqing01 已提交
113 114
        return inputs

C
cnn 已提交
115 116 117 118 119 120
    def postprocess(self,
                    np_boxes,
                    np_masks,
                    inputs,
                    np_boxes_num,
                    threshold=0.5):
Q
qingqing01 已提交
121 122 123
        # postprocess output of predictor
        results = {}
        results['boxes'] = np_boxes
C
cnn 已提交
124
        results['boxes_num'] = np_boxes_num
Q
qingqing01 已提交
125 126 127 128
        if np_masks is not None:
            results['masks'] = np_masks
        return results

C
cnn 已提交
129
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
130 131
        '''
        Args:
132
            image_list (list): list of image
Q
qingqing01 已提交
133 134 135 136 137
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
138
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
139
        '''
140
        self.det_times.preprocess_time_s.start()
C
cnn 已提交
141
        inputs = self.preprocess(image_list)
142
        self.det_times.preprocess_time_s.end()
Q
qingqing01 已提交
143 144 145 146 147 148 149 150 151 152
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
153
            if self.pred_config.mask:
Q
qingqing01 已提交
154 155 156
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

157
        self.det_times.inference_time_s.start()
Q
qingqing01 已提交
158 159 160 161 162
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
163 164
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
165
            if self.pred_config.mask:
Q
qingqing01 已提交
166 167
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
168
        self.det_times.inference_time_s.end(repeats=repeats)
Q
qingqing01 已提交
169

170
        self.det_times.postprocess_time_s.start()
Q
qingqing01 已提交
171
        results = []
G
Guanghua Yu 已提交
172 173
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
174
            results = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
G
Guanghua Yu 已提交
175 176
        else:
            results = self.postprocess(
C
cnn 已提交
177
                np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold)
178
        self.det_times.postprocess_time_s.end()
C
cnn 已提交
179
        self.det_times.img_num += len(image_list)
Q
qingqing01 已提交
180 181
        return results

W
wangguanzhong 已提交
182 183 184
    def get_timer(self):
        return self.det_times

Q
qingqing01 已提交
185

G
Guanghua Yu 已提交
186 187 188 189 190
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
191
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
G
Guanghua Yu 已提交
192
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
193
        batch_size (int): size of pre batch in inference
194 195 196
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
197 198 199 200
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
G
Guanghua Yu 已提交
201 202 203 204 205
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
206
                 device='CPU',
G
Guanghua Yu 已提交
207
                 run_mode='fluid',
208
                 batch_size=1,
209 210 211
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
212 213 214
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
215
        self.pred_config = pred_config
216
        self.predictor, self.config = load_predictor(
G
Guanghua Yu 已提交
217 218
            model_dir,
            run_mode=run_mode,
219
            batch_size=batch_size,
G
Guanghua Yu 已提交
220
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
221
            device=device,
222
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
223 224
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
225
            trt_opt_shape=trt_opt_shape,
226 227 228
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
229
        self.det_times = Timer()
230
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
G
Guanghua Yu 已提交
231 232

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
233 234 235 236 237
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
238 239 240
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
241
        '''
242
        self.det_times.preprocess_time_s.start()
G
Guanghua Yu 已提交
243
        inputs = self.preprocess(image)
244
        self.det_times.preprocess_time_s.end()
G
Guanghua Yu 已提交
245 246 247 248 249 250 251 252
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
253 254
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
255 256
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
257
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
258
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
259 260
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
261
        self.det_times.inference_time_s.start()
G
Guanghua Yu 已提交
262 263 264
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
265 266
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
267 268
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
269
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
270
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
271 272
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
273
        self.det_times.inference_time_s.end(repeats=repeats)
G
Guanghua Yu 已提交
274
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
275

W
wangguanzhong 已提交
276 277 278 279 280
        return dict(
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
G
Guanghua Yu 已提交
281 282


283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
class DetectorPicoDet(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
            batch_size=batch_size,
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image)
        self.det_times.preprocess_time_s.end()
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        np_score_list, np_boxes_list = [], []
        for i in range(warmup):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
        self.det_times.inference_time_s.end(repeats=repeats)
        self.det_times.img_num += 1
        self.det_times.postprocess_time_s.start()
        self.postprocess = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = self.postprocess(np_score_list, np_boxes_list)
        self.det_times.postprocess_time_s.end()
        return dict(boxes=np_boxes, boxes_num=np_boxes_num)


C
cnn 已提交
388
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
389 390
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
391 392
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
393 394 395 396 397
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
398 399
    im_shape = []
    scale_factor = []
400 401 402 403 404 405 406 407
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
408 409 410 411
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
412 413
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
414 415 416 417 418 419 420 421 422 423 424 425

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
445
        self.mask = False
446
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
447 448
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
449 450 451
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
452 453 454 455
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
Q
qingqing01 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
481
                   device='CPU',
482 483 484 485
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
486
                   trt_opt_shape=640,
487 488 489
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
490 491 492
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
493
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
494
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
495 496 497 498
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
499 500
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
501 502 503
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
504
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
505
    """
G
Guanghua Yu 已提交
506
    if device != 'GPU' and run_mode != 'fluid':
Q
qingqing01 已提交
507
        raise ValueError(
G
Guanghua Yu 已提交
508 509
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
510 511 512
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
513
    if device == 'GPU':
Q
qingqing01 已提交
514 515 516
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
517
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
518 519
    elif device == 'XPU':
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
520 521
    else:
        config.disable_gpu()
522 523
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
524 525 526 527 528 529 530 531 532
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
533

G
Guanghua Yu 已提交
534 535 536 537 538
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
539 540
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
541
            workspace_size=1 << 25,
Q
qingqing01 已提交
542 543 544 545
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
546
            use_calib_mode=trt_calib_mode)
547 548

        if use_dynamic_shape:
549 550 551 552 553 554 555 556 557
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
558 559 560
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
561 562 563 564 565 566 567 568

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
569
    return predictor, config
Q
qingqing01 已提交
570 571


G
Guanghua Yu 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


C
cnn 已提交
603
def visualize(image_list, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
604
    # visualize the predict result
C
cnn 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617
    start_idx = 0
    for idx, image_file in enumerate(image_list):
        im_bboxes_num = results['boxes_num'][idx]
        im_results = {}
        if 'boxes' in results:
            im_results['boxes'] = results['boxes'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'masks' in results:
            im_results['masks'] = results['masks'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'segm' in results:
            im_results['segm'] = results['segm'][start_idx:start_idx +
                                                 im_bboxes_num, :]
W
wangguanzhong 已提交
618 619 620 621 622 623 624
        if 'label' in results:
            im_results['label'] = results['label'][start_idx:start_idx +
                                                   im_bboxes_num]
        if 'score' in results:
            im_results['score'] = results['score'][start_idx:start_idx +
                                                   im_bboxes_num]

C
cnn 已提交
625 626 627 628 629 630 631 632 633
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
634 635 636 637 638 639 640 641 642


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


C
cnn 已提交
643 644 645 646 647 648
def predict_image(detector, image_list, batch_size=1):
    batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size)
    for i in range(batch_loop_cnt):
        start_index = i * batch_size
        end_index = min((i + 1) * batch_size, len(image_list))
        batch_image_list = image_list[start_index:end_index]
G
Guanghua Yu 已提交
649
        if FLAGS.run_benchmark:
C
cnn 已提交
650 651
            detector.predict(
                batch_image_list, FLAGS.threshold, warmup=10, repeats=10)
G
Guanghua Yu 已提交
652 653 654 655
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
C
cnn 已提交
656
            print('Test iter {}'.format(i))
G
Guanghua Yu 已提交
657
        else:
C
cnn 已提交
658
            results = detector.predict(batch_image_list, FLAGS.threshold)
G
Guanghua Yu 已提交
659
            visualize(
C
cnn 已提交
660
                batch_image_list,
G
Guanghua Yu 已提交
661 662 663 664
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
665 666 667


def predict_video(detector, camera_id):
668
    video_out_name = 'output.mp4'
Q
qingqing01 已提交
669 670 671 672
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
673 674
        video_out_name = os.path.split(FLAGS.video_file)[-1]
    # Get Video info : resolution, fps, frame count
Q
qingqing01 已提交
675 676
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
677 678 679 680
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

Q
qingqing01 已提交
681 682
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
683
    out_path = os.path.join(FLAGS.output_dir, video_out_name)
S
shangliang Xu 已提交
684
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
Q
qingqing01 已提交
685 686 687 688 689 690
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
691
        print('detect frame: %d' % (index))
Q
qingqing01 已提交
692
        index += 1
C
cnn 已提交
693
        results = detector.predict([frame], FLAGS.threshold)
Q
qingqing01 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
710
    detector_func = 'Detector'
G
Guanghua Yu 已提交
711
    if pred_config.arch == 'SOLOv2':
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
        detector_func = 'DetectorSOLOv2'
    elif pred_config.arch == 'PicoDet':
        detector_func = 'DetectorPicoDet'

    detector = eval(detector_func)(pred_config,
                                   FLAGS.model_dir,
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   batch_size=FLAGS.batch_size,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
                                   enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
727

Q
qingqing01 已提交
728
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
729
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
730
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
731 732
    else:
        # predict from image
C
cnn 已提交
733 734
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
735
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
C
cnn 已提交
736
        predict_image(detector, img_list, FLAGS.batch_size)
G
Guanghua Yu 已提交
737 738 739 740
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
741 742
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
G
Guanghua Yu 已提交
743 744
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
745 746 747 748 749

            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
750 751
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
752 753
            }
            data_info = {
754
                'batch_size': FLAGS.batch_size,
755 756 757
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
758 759
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
760
            det_log('Det')
Q
qingqing01 已提交
761 762 763 764


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
765
    parser = argsparser()
Q
qingqing01 已提交
766 767
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
768 769 770 771
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
772 773

    main()