infer.py 24.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
G
Guanghua Yu 已提交
18
import glob
Q
qingqing01 已提交
19 20 21 22 23
from functools import reduce

from PIL import Image
import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

29
from benchmark_utils import PaddleInferBenchmark
G
Guanghua Yu 已提交
30 31
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride
from visualize import visualize_box_mask
32
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
33

Q
qingqing01 已提交
34 35 36 37 38
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
F
Feng Ni 已提交
39
    'FCOS',
G
Guanghua Yu 已提交
40
    'SOLOv2',
F
Feng Ni 已提交
41
    'TTFNet',
C
cnn 已提交
42
    'S2ANet',
Q
qingqing01 已提交
43 44 45 46 47 48 49 50 51 52
}


class Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
53
        batch_size (int): size of pre batch in inference
54 55 56 57
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
Q
qingqing01 已提交
58 59 60 61 62 63 64 65
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
66
                 batch_size=1,
67 68 69
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
70 71 72
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
73
        self.pred_config = pred_config
74
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
75 76
            model_dir,
            run_mode=run_mode,
77
            batch_size=batch_size,
Q
qingqing01 已提交
78
            min_subgraph_size=self.pred_config.min_subgraph_size,
79
            use_gpu=use_gpu,
80
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
81 82
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
83
            trt_opt_shape=trt_opt_shape,
84 85 86
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
87 88
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
89

C
cnn 已提交
90
    def preprocess(self, image_list):
Q
qingqing01 已提交
91 92 93 94 95
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
96 97 98 99

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
100
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
101 102 103
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
Q
qingqing01 已提交
104 105
        return inputs

C
cnn 已提交
106 107 108 109 110 111
    def postprocess(self,
                    np_boxes,
                    np_masks,
                    inputs,
                    np_boxes_num,
                    threshold=0.5):
Q
qingqing01 已提交
112 113 114 115 116 117 118 119 120 121 122
        # postprocess output of predictor
        results = {}
        if self.pred_config.arch in ['Face']:
            h, w = inputs['im_shape']
            scale_y, scale_x = inputs['scale_factor']
            w, h = float(h) / scale_y, float(w) / scale_x
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        results['boxes'] = np_boxes
C
cnn 已提交
123
        results['boxes_num'] = np_boxes_num
Q
qingqing01 已提交
124 125 126 127
        if np_masks is not None:
            results['masks'] = np_masks
        return results

C
cnn 已提交
128
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
129 130
        '''
        Args:
C
cnn 已提交
131
            image_list (list): ,list of image
Q
qingqing01 已提交
132 133 134 135 136
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
137
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
138
        '''
139
        self.det_times.preprocess_time_s.start()
C
cnn 已提交
140
        inputs = self.preprocess(image_list)
141
        self.det_times.preprocess_time_s.end()
Q
qingqing01 已提交
142 143 144 145 146 147 148 149 150 151
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
152
            if self.pred_config.mask:
Q
qingqing01 已提交
153 154 155
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

156
        self.det_times.inference_time_s.start()
Q
qingqing01 已提交
157 158 159 160 161
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
162 163
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
164
            if self.pred_config.mask:
Q
qingqing01 已提交
165 166
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
167
        self.det_times.inference_time_s.end(repeats=repeats)
Q
qingqing01 已提交
168

169
        self.det_times.postprocess_time_s.start()
Q
qingqing01 已提交
170
        results = []
G
Guanghua Yu 已提交
171 172
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
C
cnn 已提交
173
            results = {'boxes': np.array([]), 'boxes_num': [0]}
G
Guanghua Yu 已提交
174 175
        else:
            results = self.postprocess(
C
cnn 已提交
176
                np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold)
177
        self.det_times.postprocess_time_s.end()
C
cnn 已提交
178
        self.det_times.img_num += len(image_list)
Q
qingqing01 已提交
179 180 181
        return results


G
Guanghua Yu 已提交
182 183 184 185 186 187 188
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
189
        batch_size (int): size of pre batch in inference
190 191 192
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
193 194 195 196 197 198 199 200
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
201
                 batch_size=1,
202 203 204
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
205 206 207
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
208
        self.pred_config = pred_config
209
        self.predictor, self.config = load_predictor(
G
Guanghua Yu 已提交
210 211
            model_dir,
            run_mode=run_mode,
212
            batch_size=batch_size,
G
Guanghua Yu 已提交
213
            min_subgraph_size=self.pred_config.min_subgraph_size,
214
            use_gpu=use_gpu,
215
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
216 217
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
218
            trt_opt_shape=trt_opt_shape,
219 220 221
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
222 223 224
        self.det_times = Timer()

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
225 226 227 228 229
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
230 231 232
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
233
        '''
234
        self.det_times.preprocess_time_s.start()
G
Guanghua Yu 已提交
235
        inputs = self.preprocess(image)
236
        self.det_times.preprocess_time_s.end()
G
Guanghua Yu 已提交
237 238 239 240 241 242 243 244
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
245 246
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
247 248
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
249
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
250
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
251 252
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
253
        self.det_times.inference_time_s.start()
G
Guanghua Yu 已提交
254 255 256
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
257 258
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
259 260
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
261
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
262
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
263 264
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
265
        self.det_times.inference_time_s.end(repeats=repeats)
G
Guanghua Yu 已提交
266
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
267

W
wangguanzhong 已提交
268 269 270 271 272
        return dict(
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
G
Guanghua Yu 已提交
273 274


C
cnn 已提交
275
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
276 277 278 279 280 281 282 283 284
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    im_shape = []
    scale_factor = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

    origin_scale_factor = np.concatenate(scale_factor, axis=0)

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    padding_imgs_shape = []
    padding_imgs_scale = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
        padding_imgs_shape.append(
            np.array([max_shape_h, max_shape_w]).astype('float32'))
        rescale = [
            float(max_shape_h) / float(im_h), float(max_shape_w) / float(im_w)
        ]
        padding_imgs_scale.append(np.array(rescale).astype('float32'))
    inputs['image'] = np.stack(padding_imgs, axis=0)
    inputs['im_shape'] = np.stack(padding_imgs_shape, axis=0)
    inputs['scale_factor'] = origin_scale_factor
Q
qingqing01 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
333
        self.mask = False
334
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
335 336
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
Q
qingqing01 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
                   use_gpu=False,
363 364 365 366
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
367
                   trt_opt_shape=640,
368 369 370
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
371 372 373 374
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
        use_gpu (bool): whether use gpu
375
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
376 377 378 379
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
380 381
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
        ValueError: predict by TensorRT need use_gpu == True.
    """
    if not use_gpu and not run_mode == 'fluid':
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
    if use_gpu:
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
403
        config.switch_ir_optim(True)
Q
qingqing01 已提交
404 405
    else:
        config.disable_gpu()
406 407
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
408 409 410 411 412 413 414 415 416
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
417 418 419 420 421 422 423 424

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
425
            use_calib_mode=trt_calib_mode)
426 427

        if use_dynamic_shape:
428 429 430 431 432 433 434 435 436
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
437 438 439
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
440 441 442 443 444 445 446 447

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
448
    return predictor, config
Q
qingqing01 已提交
449 450


G
Guanghua Yu 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


C
cnn 已提交
482
def visualize(image_list, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
483
    # visualize the predict result
C
cnn 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496
    start_idx = 0
    for idx, image_file in enumerate(image_list):
        im_bboxes_num = results['boxes_num'][idx]
        im_results = {}
        if 'boxes' in results:
            im_results['boxes'] = results['boxes'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'masks' in results:
            im_results['masks'] = results['masks'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'segm' in results:
            im_results['segm'] = results['segm'][start_idx:start_idx +
                                                 im_bboxes_num, :]
W
wangguanzhong 已提交
497 498 499 500 501 502 503
        if 'label' in results:
            im_results['label'] = results['label'][start_idx:start_idx +
                                                   im_bboxes_num]
        if 'score' in results:
            im_results['score'] = results['score'][start_idx:start_idx +
                                                   im_bboxes_num]

C
cnn 已提交
504 505 506 507 508 509 510 511 512
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
513 514 515 516 517 518 519 520 521


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


C
cnn 已提交
522 523 524 525 526 527
def predict_image(detector, image_list, batch_size=1):
    batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size)
    for i in range(batch_loop_cnt):
        start_index = i * batch_size
        end_index = min((i + 1) * batch_size, len(image_list))
        batch_image_list = image_list[start_index:end_index]
G
Guanghua Yu 已提交
528
        if FLAGS.run_benchmark:
C
cnn 已提交
529 530
            detector.predict(
                batch_image_list, FLAGS.threshold, warmup=10, repeats=10)
G
Guanghua Yu 已提交
531 532 533 534
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
C
cnn 已提交
535
            print('Test iter {}'.format(i))
G
Guanghua Yu 已提交
536
        else:
C
cnn 已提交
537
            results = detector.predict(batch_image_list, FLAGS.threshold)
G
Guanghua Yu 已提交
538
            visualize(
C
cnn 已提交
539
                batch_image_list,
G
Guanghua Yu 已提交
540 541 542 543
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
544 545 546 547 548 549 550 551 552 553


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
C
cnn 已提交
554 555
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
Q
qingqing01 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
C
cnn 已提交
572
        results = detector.predict([frame], FLAGS.threshold)
Q
qingqing01 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
        use_gpu=FLAGS.use_gpu,
593
        run_mode=FLAGS.run_mode,
594
        batch_size=FLAGS.batch_size,
595 596
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
597
        trt_opt_shape=FLAGS.trt_opt_shape,
598 599 600
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
601 602 603 604 605
    if pred_config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            pred_config,
            FLAGS.model_dir,
            use_gpu=FLAGS.use_gpu,
606
            run_mode=FLAGS.run_mode,
607
            batch_size=FLAGS.batch_size,
608 609
            trt_min_shape=FLAGS.trt_min_shape,
            trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
610
            trt_opt_shape=FLAGS.trt_opt_shape,
611 612 613
            trt_calib_mode=FLAGS.trt_calib_mode,
            cpu_threads=FLAGS.cpu_threads,
            enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
614

Q
qingqing01 已提交
615
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
616
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
617
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
618 619
    else:
        # predict from image
C
cnn 已提交
620 621
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
622
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
C
cnn 已提交
623
        predict_image(detector, img_list, FLAGS.batch_size)
G
Guanghua Yu 已提交
624 625 626 627
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
628 629
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
G
Guanghua Yu 已提交
630 631
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
632 633 634 635 636

            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
637 638
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
639 640
            }
            data_info = {
641
                'batch_size': FLAGS.batch_size,
642 643 644
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
645 646
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
647
            det_log('Det')
Q
qingqing01 已提交
648 649 650 651


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
652
    parser = argsparser()
Q
qingqing01 已提交
653 654 655 656
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)

    main()