未验证 提交 fceab308 编写于 作者: G Guanghua Yu 提交者: GitHub

Add GFL model and PicoDet (#3620)

* add gfl model and PicoDet
上级 7c507854
# Generalized Focal Loss Model(GFL)
## Introduction
[Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection](https://arxiv.org/abs/2006.04388) and [Generalized Focal Loss V2](https://arxiv.org/pdf/2011.12885.pdf)
## Model Zoo
| Backbone | Model | images/GPU | lr schedule |FPS | Box AP | download | config |
| :-------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50-FPN | GFL | 2 | 1x | ---- | 40.1 | [download](https://paddledet.bj.bcebos.com/models/gfl_r50_fpn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gfl/gfl_r50_fpn_1x_coco.yml) |
| ResNet50-FPN | GFLv2 | 2 | 1x | ---- | 40.4 | [download](https://paddledet.bj.bcebos.com/models/gflv2_r50_fpn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gfl/gflv2_r50_fpn_1x_coco.yml) |
**Notes:**
- GFL is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`.
## Citations
```
@article{li2020generalized,
title={Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection},
author={Li, Xiang and Wang, Wenhai and Wu, Lijun and Chen, Shuo and Hu, Xiaolin and Li, Jun and Tang, Jinhui and Yang, Jian},
journal={arXiv preprint arXiv:2006.04388},
year={2020}
}
@article{li2020gflv2,
title={Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection},
author={Li, Xiang and Wang, Wenhai and Hu, Xiaolin and Li, Jun and Tang, Jinhui and Yang, Jian},
journal={arXiv preprint arXiv:2011.12885},
year={2020}
}
```
architecture: GFL
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
GFL:
backbone: ResNet
neck: FPN
head: GFLHead
ResNet:
depth: 50
variant: b
norm_type: bn
freeze_at: 0
return_idx: [1,2,3]
num_stages: 4
FPN:
out_channel: 256
spatial_scales: [0.125, 0.0625, 0.03125]
extra_stage: 2
has_extra_convs: true
use_c5: false
GFLHead:
conv_feat:
name: FCOSFeat
feat_in: 256
feat_out: 256
num_convs: 4
norm_type: "gn"
use_dcn: false
fpn_stride: [8, 16, 32, 64, 128]
prior_prob: 0.01
reg_max: 16
loss_qfl:
name: QualityFocalLoss
use_sigmoid: True
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.025
nms_threshold: 0.6
worker_num: 2
TrainReader:
sample_transforms:
- Decode: {}
- RandomFlip: {prob: 0.5}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Resize: {target_size: [800, 1333], keep_ratio: true, interp: 1}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
- Gt2GFLTarget:
downsample_ratios: [8, 16, 32, 64, 128]
grid_cell_scale: 8
batch_size: 2
shuffle: true
drop_last: true
EvalReader:
sample_transforms:
- Decode: {}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Resize: {interp: 1, target_size: [800, 1333], keep_ratio: True}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 2
shuffle: false
TestReader:
sample_transforms:
- Decode: {}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Resize: {interp: 1, target_size: [800, 1333], keep_ratio: True}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
architecture: GFL
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
GFL:
backbone: ResNet
neck: FPN
head: GFLHead
ResNet:
depth: 50
variant: b
norm_type: bn
freeze_at: 0
return_idx: [1,2,3]
num_stages: 4
FPN:
out_channel: 256
spatial_scales: [0.125, 0.0625, 0.03125]
extra_stage: 2
has_extra_convs: true
use_c5: false
GFLHead:
conv_feat:
name: FCOSFeat
feat_in: 256
feat_out: 256
num_convs: 4
norm_type: "gn"
use_dcn: false
fpn_stride: [8, 16, 32, 64, 128]
prior_prob: 0.01
reg_max: 16
dgqp_module:
name: DGQP
reg_topk: 4
reg_channels: 64
add_mean: True
loss_qfl:
name: QualityFocalLoss
use_sigmoid: False
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.025
nms_threshold: 0.6
epoch: 12
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [8, 11]
- !LinearWarmup
start_factor: 0.1
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/gfl_r50_fpn.yml',
'_base_/optimizer_1x.yml',
'_base_/gfl_reader.yml',
]
weights: output/gfl_r50_fpn_1x_coco/model_final
find_unused_parameters: True
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/gflv2_r50_fpn.yml',
'_base_/optimizer_1x.yml',
'_base_/gfl_reader.yml',
]
weights: output/gfl_r50_fpn_1x_coco/model_final
find_unused_parameters: True
# PicoDet
## Introduction
We developed a series of mobile models, which named `PicoDet`.
Optimizing method of we use:
- [Generalized Focal Loss V2](https://arxiv.org/pdf/2011.12885.pdf)
- Lr Cosine Decay
## Model Zoo
### PicoDet-S
| Backbone | Input size | images/GPU | lr schedule |Box AP | FLOPS | Inference Time | download | config |
| :------------------------ | :-------: | :-------: | :-----------: | :---: | :-----: | :-----: | :-------------------------------------------------: | :-----: |
| ShuffleNetv2-1x | 320*320 | 128 | 280e | 21.9 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_s_shufflenetv2_320_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_shufflenetv2_320_coco.yml) |
| MobileNetv3-large-0.5x | 320*320 | 128 | 280e | 20.4 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_s_mbv3_320_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_mbv3_320_coco.yml) |
| ShuffleNetv2-1x | 416*416 | 96 | 280e | 24.0 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_s_shufflenetv2_416_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_shufflenetv2_416_coco.yml) |
| MobileNetv3-large-0.5x | 416*416 | 96 | 280e | 23.3 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_s_mbv3_416_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_mbv3_416_coco.yml) |
### PicoDet-M
| Backbone | Input size | images/GPU | lr schedule |Box AP | FLOPS | Inference Time | download | config |
| :------------------------ | :-------: | :-------: | :-----------: | :---: | :-----: | :-----: | :-------------------------------------------------: | :-----: |
| ShuffleNetv2-1.5x | 320*320 | 128 | 280e | 24.9 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_m_shufflenetv2_320_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_shufflenetv2_320_coco.yml) |
| MobileNetv3-large-1x | 320*320 | 128 | 280e | 26.4 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_m_mbv3_320_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_mbv3_320_coco.yml) |
| ShuffleNetv2-1.5x | 416*416 | 128 | 280e | 27.4 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_m_shufflenetv2_416_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_shufflenetv2_416_coco.yml) |
| MobileNetv3-large-1x | 416*416 | 128 | 280e | 29.2 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_m_mbv3_416_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_mbv3_416_coco.yml) |
**Notes:**
- PicoDet inference speed is tested on Kirin 980 with 4 threads by arm8 and with FP16.
- PicoDet is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`.
- PicoDet used 4 GPUs for training and mini-batch size as 128 or 96 on each GPU.
## Citations
```
@article{li2020gflv2,
title={Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection},
author={Li, Xiang and Wang, Wenhai and Hu, Xiaolin and Li, Jun and Tang, Jinhui and Yang, Jian},
journal={arXiv preprint arXiv:2011.12885},
year={2020}
}
```
epoch: 280
LearningRate:
base_lr: 0.4
schedulers:
- !CosineDecay
max_epochs: 280
- !LinearWarmup
start_factor: 0.1
steps: 300
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
worker_num: 6
TrainReader:
sample_transforms:
- Decode: {}
- RandomDistort: {}
- RandomCrop: {}
- RandomFlip: {prob: 0.5}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Resize: {target_size: [320, 320], keep_ratio: False, interp: 1}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
- Gt2GFLTarget:
downsample_ratios: [8, 16, 32]
grid_cell_scale: 5
cell_offset: 0.5
batch_size: 128
shuffle: true
drop_last: true
EvalReader:
sample_transforms:
- Decode: {}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Resize: {interp: 1, target_size: [320, 320], keep_ratio: False}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 8
shuffle: false
TestReader:
inputs_def:
image_shape: [3, 320, 320]
sample_transforms:
- Decode: {}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Resize: {interp: 1, target_size: [320, 320], keep_ratio: False}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
worker_num: 6
TrainReader:
sample_transforms:
- Decode: {}
- RandomDistort: {}
- RandomCrop: {}
- RandomFlip: {prob: 0.5}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Resize: {target_size: [416, 416], keep_ratio: False, interp: 1}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
- Gt2GFLTarget:
downsample_ratios: [8, 16, 32]
grid_cell_scale: 5
cell_offset: 0.5
batch_size: 96
shuffle: true
drop_last: true
EvalReader:
sample_transforms:
- Decode: {}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Resize: {interp: 1, target_size: [416, 416], keep_ratio: False}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 8
shuffle: false
TestReader:
inputs_def:
image_shape: [3, 416, 416]
sample_transforms:
- Decode: {}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Resize: {interp: 1, target_size: [416, 416], keep_ratio: False}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
architecture: PicoDet
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
PicoDet:
backbone: MobileNetV3
neck: PAN
head: PicoHead
MobileNetV3:
model_name: large
scale: 0.5
with_extra_blocks: false
extra_block_filters: []
feature_maps: [7, 13, 16]
PAN:
out_channel: 96
start_level: 0
end_level: 3
spatial_scales: [0.125, 0.0625, 0.03125]
PicoHead:
conv_feat:
name: PicoFeat
feat_in: 96
feat_out: 96
num_convs: 2
norm_type: bn
share_cls_reg: True
fpn_stride: [8, 16, 32]
feat_in_chan: 96
prior_prob: 0.01
reg_max: 7
cell_offset: 0.5
loss_qfl:
name: QualityFocalLoss
use_sigmoid: True
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.025
nms_threshold: 0.6
architecture: PicoDet
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ShuffleNetV2_x1_0_pretrained.pdparams
PicoDet:
backbone: ShuffleNetV2
neck: PAN
head: PicoHead
ShuffleNetV2:
scale: 1.0
feature_maps: [5, 13, 17]
act: leaky_relu
PAN:
out_channel: 96
start_level: 0
end_level: 3
spatial_scales: [0.125, 0.0625, 0.03125]
PicoHead:
conv_feat:
name: PicoFeat
feat_in: 96
feat_out: 96
num_convs: 2
norm_type: bn
share_cls_reg: True
fpn_stride: [8, 16, 32]
feat_in_chan: 96
prior_prob: 0.01
reg_max: 7
cell_offset: 0.5
loss_qfl:
name: QualityFocalLoss
use_sigmoid: True
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.025
nms_threshold: 0.6
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_mbv3_0_5x.yml',
'_base_/optimizer_280e.yml',
'_base_/picodet_320_reader.yml',
]
weights: output/picodet_m_mbv3_320_coco/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
snapshot_epoch: 10
MobileNetV3:
model_name: large
scale: 1.0
with_extra_blocks: false
extra_block_filters: []
feature_maps: [7, 13, 16]
PAN:
out_channel: 128
start_level: 0
end_level: 3
spatial_scales: [0.125, 0.0625, 0.03125]
PicoHead:
conv_feat:
name: PicoFeat
feat_in: 128
feat_out: 128
num_convs: 2
norm_type: bn
share_cls_reg: True
feat_in_chan: 128
TrainReader:
batch_size: 88
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_mbv3_0_5x.yml',
'_base_/optimizer_280e.yml',
'_base_/picodet_416_reader.yml',
]
weights: output/picodet_m_mbv3_320_coco/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
snapshot_epoch: 10
MobileNetV3:
model_name: large
scale: 1.0
with_extra_blocks: false
extra_block_filters: []
feature_maps: [7, 13, 16]
PAN:
out_channel: 128
start_level: 0
end_level: 3
spatial_scales: [0.125, 0.0625, 0.03125]
PicoHead:
conv_feat:
name: PicoFeat
feat_in: 128
feat_out: 128
num_convs: 2
norm_type: bn
share_cls_reg: True
feat_in_chan: 128
TrainReader:
batch_size: 56
LearningRate:
base_lr: 0.3
schedulers:
- !CosineDecay
max_epochs: 280
- !LinearWarmup
start_factor: 0.1
steps: 300
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_mbv3_0_5x.yml',
'_base_/optimizer_280e.yml',
'_base_/picodet_320_reader.yml',
]
weights: output/picodet_m_r18_320_coco/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet18_vd_pretrained.pdparams
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
snapshot_epoch: 10
PicoDet:
backbone: ResNet
neck: PAN
head: PicoHead
ResNet:
depth: 18
variant: d
return_idx: [1, 2, 3]
freeze_at: -1
freeze_norm: false
norm_decay: 0.
PAN:
out_channel: 128
start_level: 0
end_level: 3
spatial_scales: [0.125, 0.0625, 0.03125]
PicoHead:
conv_feat:
name: PicoFeat
feat_in: 128
feat_out: 128
num_convs: 2
norm_type: bn
share_cls_reg: True
feat_in_chan: 128
TrainReader:
batch_size: 56
LearningRate:
base_lr: 0.3
schedulers:
- !CosineDecay
max_epochs: 280
- !LinearWarmup
start_factor: 0.1
steps: 300
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_shufflenetv2_1x.yml',
'_base_/optimizer_280e.yml',
'_base_/picodet_320_reader.yml',
]
weights: output/picodet_s_shufflenetv2_320_coco/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ShuffleNetV2_x1_5_pretrained.pdparams
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
snapshot_epoch: 10
ShuffleNetV2:
scale: 1.5
feature_maps: [5, 13, 17]
act: leaky_relu
PAN:
out_channel: 128
start_level: 0
end_level: 3
spatial_scales: [0.125, 0.0625, 0.03125]
PicoHead:
conv_feat:
name: PicoFeat
feat_in: 128
feat_out: 128
num_convs: 2
norm_type: bn
share_cls_reg: True
feat_in_chan: 128
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_shufflenetv2_1x.yml',
'_base_/optimizer_280e.yml',
'_base_/picodet_416_reader.yml',
]
weights: output/picodet_s_shufflenetv2_320_coco/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ShuffleNetV2_x1_5_pretrained.pdparams
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
snapshot_epoch: 10
ShuffleNetV2:
scale: 1.5
feature_maps: [5, 13, 17]
act: leaky_relu
PAN:
out_channel: 128
start_level: 0
end_level: 3
spatial_scales: [0.125, 0.0625, 0.03125]
PicoHead:
conv_feat:
name: PicoFeat
feat_in: 128
feat_out: 128
num_convs: 2
norm_type: bn
share_cls_reg: True
feat_in_chan: 128
TrainReader:
batch_size: 88
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_mbv3_0_5x.yml',
'_base_/optimizer_280e.yml',
'_base_/picodet_320_reader.yml',
]
weights: output/picodet_s_mbv3_320_coco/model_final
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
snapshot_epoch: 10
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_mbv3_0_5x.yml',
'_base_/optimizer_280e.yml',
'_base_/picodet_416_reader.yml',
]
weights: output/picodet_s_mbv3_320_coco/model_final
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
snapshot_epoch: 10
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_shufflenetv2_1x.yml',
'_base_/optimizer_280e.yml',
'_base_/picodet_320_reader.yml',
]
weights: output/picodet_s_shufflenetv2_320_coco/model_final
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
snapshot_epoch: 10
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_shufflenetv2_1x.yml',
'_base_/optimizer_280e.yml',
'_base_/picodet_416_reader.yml',
]
weights: output/picodet_s_shufflenetv2_320_coco/model_final
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
snapshot_epoch: 10
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_s_mbv3_320_coco.pdparams
slim: QAT
QAT:
quant_config: {
'activation_preprocess_type': 'PACT',
'weight_quantize_type': 'channel_wise_abs_max', 'activation_quantize_type': 'moving_average_abs_max',
'weight_bits': 8, 'activation_bits': 8, 'dtype': 'int8', 'window_size': 10000, 'moving_rate': 0.9,
'quantizable_layer_type': ['Conv2D', 'Linear']}
print_model: False
epoch: 50
LearningRate:
base_lr: 0.0001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones:
- 35
- 45
- !LinearWarmup
start_factor: 0.
steps: 1000
......@@ -42,6 +42,8 @@ SUPPORT_MODELS = {
'JDE',
'FairMOT',
'DeepSORT',
'GFL',
'PicoDet',
}
......
......@@ -79,6 +79,14 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
请参考[Res2Net](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/res2net/)
### GFL
请参考[GFL](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gfl)
### PicoDet
请参考[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet)
## 旋转框检测
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
def bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-6):
"""Calculate overlap between two set of bboxes.
If ``is_aligned `` is ``False``, then calculate the overlaps between each
bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned
pair of bboxes1 and bboxes2.
Args:
bboxes1 (Tensor): shape (B, m, 4) in <x1, y1, x2, y2> format or empty.
bboxes2 (Tensor): shape (B, n, 4) in <x1, y1, x2, y2> format or empty.
B indicates the batch dim, in shape (B1, B2, ..., Bn).
If ``is_aligned `` is ``True``, then m and n must be equal.
mode (str): "iou" (intersection over union) or "iof" (intersection over
foreground).
is_aligned (bool, optional): If True, then m and n must be equal.
Default False.
eps (float, optional): A value added to the denominator for numerical
stability. Default 1e-6.
Returns:
Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
"""
assert mode in ['iou', 'iof', 'giou'], 'Unsupported mode {}'.format(mode)
# Either the boxes are empty or the length of boxes's last dimenstion is 4
assert (bboxes1.shape[-1] == 4 or bboxes1.shape[0] == 0)
assert (bboxes2.shape[-1] == 4 or bboxes2.shape[0] == 0)
# Batch dim must be the same
# Batch dim: (B1, B2, ... Bn)
assert bboxes1.shape[:-2] == bboxes2.shape[:-2]
batch_shape = bboxes1.shape[:-2]
rows = bboxes1.shape[-2] if bboxes1.shape[0] > 0 else 0
cols = bboxes2.shape[-2] if bboxes2.shape[0] > 0 else 0
if is_aligned:
assert rows == cols
if rows * cols == 0:
if is_aligned:
return np.random.random(batch_shape + (rows, ))
else:
return np.random.random(batch_shape + (rows, cols))
area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * (
bboxes1[..., 3] - bboxes1[..., 1])
area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * (
bboxes2[..., 3] - bboxes2[..., 1])
if is_aligned:
lt = np.maximum(bboxes1[..., :2], bboxes2[..., :2]) # [B, rows, 2]
rb = np.minimum(bboxes1[..., 2:], bboxes2[..., 2:]) # [B, rows, 2]
wh = (rb - lt).clip(min=0) # [B, rows, 2]
overlap = wh[..., 0] * wh[..., 1]
if mode in ['iou', 'giou']:
union = area1 + area2 - overlap
else:
union = area1
if mode == 'giou':
enclosed_lt = np.minimum(bboxes1[..., :2], bboxes2[..., :2])
enclosed_rb = np.maximum(bboxes1[..., 2:], bboxes2[..., 2:])
else:
lt = np.maximum(bboxes1[..., :, None, :2],
bboxes2[..., None, :, :2]) # [B, rows, cols, 2]
rb = np.minimum(bboxes1[..., :, None, 2:],
bboxes2[..., None, :, 2:]) # [B, rows, cols, 2]
wh = (rb - lt).clip(min=0) # [B, rows, cols, 2]
overlap = wh[..., 0] * wh[..., 1]
if mode in ['iou', 'giou']:
union = area1[..., None] + area2[..., None, :] - overlap
else:
union = area1[..., None]
if mode == 'giou':
enclosed_lt = np.minimum(bboxes1[..., :, None, :2],
bboxes2[..., None, :, :2])
enclosed_rb = np.maximum(bboxes1[..., :, None, 2:],
bboxes2[..., None, :, 2:])
eps = np.array([eps])
union = np.maximum(union, eps)
ious = overlap / union
if mode in ['iou', 'iof']:
return ious
# calculate gious
enclose_wh = (enclosed_rb - enclosed_lt).clip(min=0)
enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1]
enclose_area = np.maximum(enclose_area, eps)
gious = ious - (enclose_area - union) / enclose_area
return gious
def topk_(input, k, axis=1, largest=True):
x = -input if largest else input
if axis == 0:
row_index = np.arange(input.shape[1 - axis])
topk_index = np.argpartition(x, k, axis=axis)[0:k, :]
topk_data = x[topk_index, row_index]
topk_index_sort = np.argsort(topk_data, axis=axis)
topk_data_sort = topk_data[topk_index_sort, row_index]
topk_index_sort = topk_index[0:k, :][topk_index_sort, row_index]
else:
column_index = np.arange(x.shape[1 - axis])[:, None]
topk_index = np.argpartition(x, k, axis=axis)[:, 0:k]
topk_data = x[column_index, topk_index]
topk_data = -topk_data if largest else topk_data
topk_index_sort = np.argsort(topk_data, axis=axis)
topk_data_sort = topk_data[column_index, topk_index_sort]
topk_index_sort = topk_index[:, 0:k][column_index, topk_index_sort]
return topk_data_sort, topk_index_sort
class ATSSAssigner(object):
"""Assign a corresponding gt bbox or background to each bbox.
Each proposals will be assigned with `0` or a positive integer
indicating the ground truth index.
- 0: negative sample, no assigned gt
- positive integer: positive sample, index (1-based) of assigned gt
Args:
topk (float): number of bbox selected in each level
"""
def __init__(self, topk=9):
self.topk = topk
def __call__(self,
bboxes,
num_level_bboxes,
gt_bboxes,
gt_bboxes_ignore=None,
gt_labels=None):
"""Assign gt to bboxes.
The assignment is done in following steps
1. compute iou between all bbox (bbox of all pyramid levels) and gt
2. compute center distance between all bbox and gt
3. on each pyramid level, for each gt, select k bbox whose center
are closest to the gt center, so we total select k*l bbox as
candidates for each gt
4. get corresponding iou for the these candidates, and compute the
mean and std, set mean + std as the iou threshold
5. select these candidates whose iou are greater than or equal to
the threshold as postive
6. limit the positive sample's center in gt
Args:
bboxes (np.array): Bounding boxes to be assigned, shape(n, 4).
num_level_bboxes (List): num of bboxes in each level
gt_bboxes (np.array): Groundtruth boxes, shape (k, 4).
gt_bboxes_ignore (np.array, optional): Ground truth bboxes that are
labelled as `ignored`, e.g., crowd boxes in COCO.
gt_labels (np.array, optional): Label of gt_bboxes, shape (k, ).
"""
bboxes = bboxes[:, :4]
num_gt, num_bboxes = gt_bboxes.shape[0], bboxes.shape[0]
# compute iou between all bbox and gt
overlaps = bbox_overlaps(bboxes, gt_bboxes)
# assign 0 by default
assigned_gt_inds = np.zeros((num_bboxes, ), dtype=np.int64)
if num_gt == 0 or num_bboxes == 0:
# No ground truth or boxes, return empty assignment
max_overlaps = np.zeros((num_bboxes, ))
if num_gt == 0:
# No truth, assign everything to background
assigned_gt_inds[:] = 0
if not np.any(gt_labels):
assigned_labels = None
else:
assigned_labels = -np.ones((num_bboxes, ), dtype=np.int64)
return assigned_gt_inds, max_overlaps, assigned_labels
# compute center distance between all bbox and gt
gt_cx = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0
gt_cy = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0
gt_points = np.stack((gt_cx, gt_cy), axis=1)
bboxes_cx = (bboxes[:, 0] + bboxes[:, 2]) / 2.0
bboxes_cy = (bboxes[:, 1] + bboxes[:, 3]) / 2.0
bboxes_points = np.stack((bboxes_cx, bboxes_cy), axis=1)
distances = np.sqrt(
np.power((bboxes_points[:, None, :] - gt_points[None, :, :]), 2)
.sum(-1))
# Selecting candidates based on the center distance
candidate_idxs = []
start_idx = 0
for bboxes_per_level in num_level_bboxes:
# on each pyramid level, for each gt,
# select k bbox whose center are closest to the gt center
end_idx = start_idx + bboxes_per_level
distances_per_level = distances[start_idx:end_idx, :]
selectable_k = min(self.topk, bboxes_per_level)
_, topk_idxs_per_level = topk_(
distances_per_level, selectable_k, axis=0, largest=False)
candidate_idxs.append(topk_idxs_per_level + start_idx)
start_idx = end_idx
candidate_idxs = np.concatenate(candidate_idxs, axis=0)
# get corresponding iou for the these candidates, and compute the
# mean and std, set mean + std as the iou threshold
candidate_overlaps = overlaps[candidate_idxs, np.arange(num_gt)]
overlaps_mean_per_gt = candidate_overlaps.mean(0)
overlaps_std_per_gt = candidate_overlaps.std(0)
overlaps_thr_per_gt = overlaps_mean_per_gt + overlaps_std_per_gt
is_pos = candidate_overlaps >= overlaps_thr_per_gt[None, :]
# limit the positive sample's center in gt
for gt_idx in range(num_gt):
candidate_idxs[:, gt_idx] += gt_idx * num_bboxes
ep_bboxes_cx = np.broadcast_to(
bboxes_cx.reshape(1, -1), [num_gt, num_bboxes]).reshape(-1)
ep_bboxes_cy = np.broadcast_to(
bboxes_cy.reshape(1, -1), [num_gt, num_bboxes]).reshape(-1)
candidate_idxs = candidate_idxs.reshape(-1)
# calculate the left, top, right, bottom distance between positive
# bbox center and gt side
l_ = ep_bboxes_cx[candidate_idxs].reshape(-1, num_gt) - gt_bboxes[:, 0]
t_ = ep_bboxes_cy[candidate_idxs].reshape(-1, num_gt) - gt_bboxes[:, 1]
r_ = gt_bboxes[:, 2] - ep_bboxes_cx[candidate_idxs].reshape(-1, num_gt)
b_ = gt_bboxes[:, 3] - ep_bboxes_cy[candidate_idxs].reshape(-1, num_gt)
is_in_gts = np.stack([l_, t_, r_, b_], axis=1).min(axis=1) > 0.01
is_pos = is_pos & is_in_gts
# if an anchor box is assigned to multiple gts,
# the one with the highest IoU will be selected.
overlaps_inf = -np.inf * np.ones_like(overlaps).T.reshape(-1)
index = candidate_idxs.reshape(-1)[is_pos.reshape(-1)]
overlaps_inf[index] = overlaps.T.reshape(-1)[index]
overlaps_inf = overlaps_inf.reshape(num_gt, -1).T
max_overlaps = overlaps_inf.max(axis=1)
argmax_overlaps = overlaps_inf.argmax(axis=1)
assigned_gt_inds[max_overlaps !=
-np.inf] = argmax_overlaps[max_overlaps != -np.inf] + 1
return assigned_gt_inds, max_overlaps
......@@ -22,9 +22,11 @@ except Exception:
from collections import Sequence
import cv2
import math
import numpy as np
from .operators import register_op, BaseOperator, Resize
from .op_helper import jaccard_overlap, gaussian2D
from .atss_assigner import ATSSAssigner
from scipy import ndimage
from ppdet.modeling import bbox_utils
......@@ -33,7 +35,8 @@ logger = setup_logger(__name__)
__all__ = [
'PadBatch', 'BatchRandomResize', 'Gt2YoloTarget', 'Gt2FCOSTarget',
'Gt2TTFTarget', 'Gt2Solov2Target', 'Gt2SparseRCNNTarget', 'PadMaskBatch'
'Gt2TTFTarget', 'Gt2Solov2Target', 'Gt2SparseRCNNTarget', 'PadMaskBatch',
'Gt2GFLTarget'
]
......@@ -177,8 +180,6 @@ class Gt2YoloTarget(BaseOperator):
h, w = samples[0]['image'].shape[1:3]
an_hw = np.array(self.anchors) / np.array([[w, h]])
for sample in samples:
# im, gt_bbox, gt_class, gt_score = sample
im = sample['image']
gt_bbox = sample['gt_bbox']
gt_class = sample['gt_class']
if 'gt_score' not in sample:
......@@ -367,7 +368,6 @@ class Gt2FCOSTarget(BaseOperator):
"object_sizes_of_interest', and 'downsample_ratios' should have same length."
for sample in samples:
# im, gt_bbox, gt_class, gt_score = sample
im = sample['image']
bboxes = sample['gt_bbox']
gt_class = sample['gt_class']
......@@ -466,6 +466,134 @@ class Gt2FCOSTarget(BaseOperator):
return samples
@register_op
class Gt2GFLTarget(BaseOperator):
"""
Generate GFocal loss targets by groud truth data
"""
def __init__(self,
num_classes=80,
downsample_ratios=[8, 16, 32, 64, 128],
grid_cell_scale=4,
cell_offset=0):
super(Gt2GFLTarget, self).__init__()
self.num_classes = num_classes
self.downsample_ratios = downsample_ratios
self.grid_cell_scale = grid_cell_scale
self.cell_offset = cell_offset
self.assigner = ATSSAssigner()
def get_grid_cells(self, featmap_size, scale, stride, offset=0):
"""
Generate grid cells of a feature map for target assignment.
Args:
featmap_size: Size of a single level feature map.
scale: Grid cell scale.
stride: Down sample stride of the feature map.
offset: Offset of grid cells.
return:
Grid_cells xyxy position. Size should be [feat_w * feat_h, 4]
"""
cell_size = stride * scale
h, w = featmap_size
x_range = (np.arange(w, dtype=np.float32) + offset) * stride
y_range = (np.arange(h, dtype=np.float32) + offset) * stride
x, y = np.meshgrid(x_range, y_range)
y = y.flatten()
x = x.flatten()
grid_cells = np.stack(
[
x - 0.5 * cell_size, y - 0.5 * cell_size, x + 0.5 * cell_size,
y + 0.5 * cell_size
],
axis=-1)
return grid_cells
def get_sample(self, assign_gt_inds, gt_bboxes):
pos_inds = np.unique(np.nonzero(assign_gt_inds > 0)[0])
neg_inds = np.unique(np.nonzero(assign_gt_inds == 0)[0])
pos_assigned_gt_inds = assign_gt_inds[pos_inds] - 1
if gt_bboxes.size == 0:
# hack for index error case
assert pos_assigned_gt_inds.size == 0
pos_gt_bboxes = np.empty_like(gt_bboxes).reshape(-1, 4)
else:
if len(gt_bboxes.shape) < 2:
gt_bboxes = gt_bboxes.resize(-1, 4)
pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds, :]
return pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds
def __call__(self, samples, context=None):
assert len(samples) > 0
batch_size = len(samples)
# get grid cells of image
h, w = samples[0]['image'].shape[1:3]
multi_level_grid_cells = []
for stride in self.downsample_ratios:
featmap_size = (int(math.ceil(h / stride)),
int(math.ceil(w / stride)))
multi_level_grid_cells.append(
self.get_grid_cells(featmap_size, self.grid_cell_scale, stride,
self.cell_offset))
mlvl_grid_cells_list = [
multi_level_grid_cells for i in range(batch_size)
]
# pixel cell number of multi-level feature maps
num_level_cells = [
grid_cells.shape[0] for grid_cells in mlvl_grid_cells_list[0]
]
num_level_cells_list = [num_level_cells] * batch_size
# concat all level cells and to a single array
for i in range(batch_size):
mlvl_grid_cells_list[i] = np.concatenate(mlvl_grid_cells_list[i])
# target assign on all images
for sample, grid_cells, num_level_cells in zip(
samples, mlvl_grid_cells_list, num_level_cells_list):
gt_bboxes = sample['gt_bbox']
gt_labels = sample['gt_class'].squeeze()
if gt_labels.size == 1:
gt_labels = np.array([gt_labels]).astype(np.int32)
gt_bboxes_ignore = None
assign_gt_inds, _ = self.assigner(grid_cells, num_level_cells,
gt_bboxes, gt_bboxes_ignore,
gt_labels)
pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds = self.get_sample(
assign_gt_inds, gt_bboxes)
num_cells = grid_cells.shape[0]
bbox_targets = np.zeros_like(grid_cells)
bbox_weights = np.zeros_like(grid_cells)
labels = np.ones([num_cells], dtype=np.int64) * self.num_classes
label_weights = np.zeros([num_cells], dtype=np.float32)
if len(pos_inds) > 0:
pos_bbox_targets = pos_gt_bboxes
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
if not np.any(gt_labels):
labels[pos_inds] = 0
else:
labels[pos_inds] = gt_labels[pos_assigned_gt_inds]
label_weights[pos_inds] = 1.0
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
sample['grid_cells'] = grid_cells
sample['labels'] = labels
sample['label_weights'] = label_weights
sample['bbox_targets'] = bbox_targets
sample['pos_num'] = max(pos_inds.size, 1)
sample.pop('is_crowd', None)
sample.pop('difficult', None)
sample.pop('gt_class', None)
sample.pop('gt_bbox', None)
sample.pop('gt_score', None)
return samples
@register_op
class Gt2TTFTarget(BaseOperator):
__shared__ = ['num_classes']
......
......@@ -42,6 +42,8 @@ TRT_MIN_SUBGRAPH = {
'DeepSORT': 3,
'JDE': 10,
'FairMOT': 5,
'GFL': 16,
'PicoDet': 3,
}
KEYPOINT_ARCH = ['HigherHRNet', 'TopDownHRNet']
......@@ -116,8 +118,9 @@ def _dump_infer_config(config, path, image_shape, model):
break
if not arch_state:
logger.error(
'Architecture: {} is not supported for exporting model now'.format(
infer_arch))
'Architecture: {} is not supported for exporting model now.\n'.
format(infer_arch) +
'Please set TRT_MIN_SUBGRAPH in ppdet/engine/export_utils.py')
os._exit(0)
if 'Mask' in infer_arch:
infer_cfg['mask'] = True
......
......@@ -21,6 +21,8 @@ from . import jde
from . import deepsort
from . import fairmot
from . import centernet
from . import gfl
from . import picodet
from . import detr
from . import sparse_rcnn
......@@ -41,5 +43,7 @@ from .deepsort import *
from .fairmot import *
from .centernet import *
from .blazeface import *
from .gfl import *
from .picodet import *
from .detr import *
from .sparse_rcnn import *
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['GFL']
@register
class GFL(BaseArch):
"""
Generalized Focal Loss network, see https://arxiv.org/abs/2006.04388
Args:
backbone (object): backbone instance
neck (object): 'FPN' instance
head (object): 'GFLHead' instance
"""
__category__ = 'architecture'
def __init__(self, backbone, neck, head='GFLHead'):
super(GFL, self).__init__()
self.backbone = backbone
self.neck = neck
self.head = head
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
head = create(cfg['head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"head": head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
fpn_feats = self.neck(body_feats)
head_outs = self.head(fpn_feats)
if not self.training:
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
bboxes, bbox_num = self.head.post_process(head_outs, im_shape,
scale_factor)
return bboxes, bbox_num
else:
return head_outs
def get_loss(self, ):
loss = {}
head_outs = self._forward()
loss_gfl = self.head.get_loss(head_outs, self.inputs)
loss.update(loss_gfl)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
bbox_pred, bbox_num = self._forward()
output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
return output
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['PicoDet']
@register
class PicoDet(BaseArch):
"""
Generalized Focal Loss network, see https://arxiv.org/abs/2006.04388
Args:
backbone (object): backbone instance
neck (object): 'FPN' instance
head (object): 'PicoHead' instance
"""
__category__ = 'architecture'
def __init__(self, backbone, neck, head='PicoHead'):
super(PicoDet, self).__init__()
self.backbone = backbone
self.neck = neck
self.head = head
self.deploy = False
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
head = create(cfg['head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"head": head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
fpn_feats = self.neck(body_feats)
head_outs = self.head(fpn_feats)
if self.training or self.deploy:
return head_outs
else:
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
bboxes, bbox_num = self.head.post_process(head_outs, im_shape,
scale_factor)
return bboxes, bbox_num
def get_loss(self, ):
loss = {}
head_outs = self._forward()
loss_gfl = self.head.get_loss(head_outs, self.inputs)
loss.update(loss_gfl)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
if self.deploy:
return {'picodet': self._forward()[0]}
else:
bbox_pred, bbox_num = self._forward()
output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
return output
......@@ -23,6 +23,7 @@ from . import ghostnet
from . import senet
from . import res2net
from . import dla
from . import shufflenet_v2
from .vgg import *
from .resnet import *
......@@ -35,3 +36,4 @@ from .ghostnet import *
from .senet import *
from .res2net import *
from .dla import *
from .shufflenet_v2 import *
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
from paddle import ParamAttr
from paddle.nn import Conv2D, MaxPool2D, AdaptiveAvgPool2D, BatchNorm
from paddle.nn.initializer import KaimingNormal
from ppdet.core.workspace import register, serializable
from numbers import Integral
from ..shape_spec import ShapeSpec
__all__ = ['ShuffleNetV2']
def channel_shuffle(x, groups):
batch_size, num_channels, height, width = x.shape[0:4]
channels_per_group = num_channels // groups
# reshape
x = paddle.reshape(
x=x, shape=[batch_size, groups, channels_per_group, height, width])
# transpose
x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])
# flatten
x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
return x
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
act=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(initializer=KaimingNormal()),
bias_attr=False)
self._batch_norm = BatchNorm(out_channels, act=act)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class InvertedResidual(nn.Layer):
def __init__(self, in_channels, out_channels, stride, act="relu"):
super(InvertedResidual, self).__init__()
self._conv_pw = ConvBNLayer(
in_channels=in_channels // 2,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
self._conv_dw = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=3,
stride=stride,
padding=1,
groups=out_channels // 2,
act=None)
self._conv_linear = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
def forward(self, inputs):
x1, x2 = paddle.split(
inputs,
num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
axis=1)
x2 = self._conv_pw(x2)
x2 = self._conv_dw(x2)
x2 = self._conv_linear(x2)
out = paddle.concat([x1, x2], axis=1)
return channel_shuffle(out, 2)
class InvertedResidualDS(nn.Layer):
def __init__(self, in_channels, out_channels, stride, act="relu"):
super(InvertedResidualDS, self).__init__()
# branch1
self._conv_dw_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=stride,
padding=1,
groups=in_channels,
act=None)
self._conv_linear_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
# branch2
self._conv_pw_2 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
self._conv_dw_2 = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=3,
stride=stride,
padding=1,
groups=out_channels // 2,
act=None)
self._conv_linear_2 = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
def forward(self, inputs):
x1 = self._conv_dw_1(inputs)
x1 = self._conv_linear_1(x1)
x2 = self._conv_pw_2(inputs)
x2 = self._conv_dw_2(x2)
x2 = self._conv_linear_2(x2)
out = paddle.concat([x1, x2], axis=1)
return channel_shuffle(out, 2)
@register
@serializable
class ShuffleNetV2(nn.Layer):
def __init__(self,
scale=1.0,
act="relu",
feature_maps=[5, 13, 17],
with_last_conv=False):
super(ShuffleNetV2, self).__init__()
self.scale = scale
self.with_last_conv = with_last_conv
if isinstance(feature_maps, Integral):
feature_maps = [feature_maps]
self.feature_maps = feature_maps
stage_repeats = [4, 8, 4]
if scale == 0.25:
stage_out_channels = [-1, 24, 24, 48, 96, 512]
elif scale == 0.33:
stage_out_channels = [-1, 24, 32, 64, 128, 512]
elif scale == 0.5:
stage_out_channels = [-1, 24, 48, 96, 192, 1024]
elif scale == 1.0:
stage_out_channels = [-1, 24, 116, 232, 464, 1024]
elif scale == 1.5:
stage_out_channels = [-1, 24, 176, 352, 704, 1024]
elif scale == 2.0:
stage_out_channels = [-1, 24, 224, 488, 976, 2048]
else:
raise NotImplementedError("This scale size:[" + str(scale) +
"] is not implemented!")
self._out_channels = []
self._feature_idx = 0
# 1. conv1
self._conv1 = ConvBNLayer(
in_channels=3,
out_channels=stage_out_channels[1],
kernel_size=3,
stride=2,
padding=1,
act=act)
self._max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)
self._feature_idx += 1
# 2. bottleneck sequences
self._block_list = []
for stage_id, num_repeat in enumerate(stage_repeats):
for i in range(num_repeat):
if i == 0:
block = self.add_sublayer(
name=str(stage_id + 2) + '_' + str(i + 1),
sublayer=InvertedResidualDS(
in_channels=stage_out_channels[stage_id + 1],
out_channels=stage_out_channels[stage_id + 2],
stride=2,
act=act))
else:
block = self.add_sublayer(
name=str(stage_id + 2) + '_' + str(i + 1),
sublayer=InvertedResidual(
in_channels=stage_out_channels[stage_id + 2],
out_channels=stage_out_channels[stage_id + 2],
stride=1,
act=act))
self._block_list.append(block)
self._feature_idx += 1
self._update_out_channels(stage_out_channels[stage_id + 2],
self._feature_idx, self.feature_maps)
if self.with_last_conv:
# last_conv
self._last_conv = ConvBNLayer(
in_channels=stage_out_channels[-2],
out_channels=stage_out_channels[-1],
kernel_size=1,
stride=1,
padding=0,
act=act)
self._feature_idx += 1
self._update_out_channels(stage_out_channels[-1], self._feature_idx,
self.feature_maps)
def _update_out_channels(self, channel, feature_idx, feature_maps):
if feature_idx in feature_maps:
self._out_channels.append(channel)
def forward(self, inputs):
y = self._conv1(inputs['image'])
y = self._max_pool(y)
outs = []
for i, inv in enumerate(self._block_list):
y = inv(y)
if i + 2 in self.feature_maps:
outs.append(y)
if self.with_last_conv:
y = self._last_conv(y)
outs.append(y)
return outs
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]
......@@ -601,3 +601,47 @@ def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16):
ious = inter_area / (b1_area + b2_area - inter_area + eps)
return ious
def bbox2distance(points, bbox, max_dis=None, eps=0.1):
"""Decode bounding box based on distances.
Args:
points (Tensor): Shape (n, 2), [x, y].
bbox (Tensor): Shape (n, 4), "xyxy" format
max_dis (float): Upper bound of the distance.
eps (float): a small value to ensure target < max_dis, instead <=
Returns:
Tensor: Decoded distances.
"""
left = points[:, 0] - bbox[:, 0]
top = points[:, 1] - bbox[:, 1]
right = bbox[:, 2] - points[:, 0]
bottom = bbox[:, 3] - points[:, 1]
if max_dis is not None:
left = left.clip(min=0, max=max_dis - eps)
top = top.clip(min=0, max=max_dis - eps)
right = right.clip(min=0, max=max_dis - eps)
bottom = bottom.clip(min=0, max=max_dis - eps)
return paddle.stack([left, top, right, bottom], -1)
def distance2bbox(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = x1.clip(min=0, max=max_shape[1])
y1 = y1.clip(min=0, max=max_shape[0])
x2 = x2.clip(min=0, max=max_shape[1])
y2 = y2.clip(min=0, max=max_shape[0])
return paddle.stack([x1, y1, x2, y2], -1)
......@@ -25,6 +25,8 @@ from . import face_head
from . import s2anet_head
from . import keypoint_hrhrnet_head
from . import centernet_head
from . import gfl_head
from . import pico_head
from . import detr_head
from . import sparsercnn_head
......@@ -41,5 +43,7 @@ from .face_head import *
from .s2anet_head import *
from .keypoint_hrhrnet_head import *
from .centernet_head import *
from .gfl_head import *
from .pico_head import *
from .detr_head import *
from .sparsercnn_head import *
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant
from ppdet.core.workspace import register
from ppdet.modeling.layers import ConvNormLayer
from ppdet.modeling.bbox_utils import distance2bbox, bbox2distance
from ppdet.data.transform.atss_assigner import bbox_overlaps
class ScaleReg(nn.Layer):
"""
Parameter for scaling the regression outputs.
"""
def __init__(self):
super(ScaleReg, self).__init__()
self.scale_reg = self.create_parameter(
shape=[1],
attr=ParamAttr(initializer=Constant(value=1.)),
dtype="float32")
def forward(self, inputs):
out = inputs * self.scale_reg
return out
class Integral(nn.Layer):
"""A fixed layer for calculating integral result from distribution.
This layer calculates the target location by :math: `sum{P(y_i) * y_i}`,
P(y_i) denotes the softmax vector that represents the discrete distribution
y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max}
Args:
reg_max (int): The maximal value of the discrete set. Default: 16. You
may want to reset it according to your new dataset or related
settings.
"""
def __init__(self, reg_max=16):
super(Integral, self).__init__()
self.reg_max = reg_max
self.register_buffer('project',
paddle.linspace(0, self.reg_max, self.reg_max + 1))
def forward(self, x):
"""Forward feature from the regression head to get integral result of
bounding box location.
Args:
x (Tensor): Features of the regression head, shape (N, 4*(n+1)),
n is self.reg_max.
Returns:
x (Tensor): Integral result of box locations, i.e., distance
offsets from the box center in four directions, shape (N, 4).
"""
x = F.softmax(x.reshape([-1, self.reg_max + 1]), axis=1)
x = F.linear(x, self.project).reshape([-1, 4])
return x
@register
class DGQP(nn.Layer):
"""Distribution-Guided Quality Predictor of GFocal head
Args:
reg_topk (int): top-k statistics of distribution to guide LQE
reg_channels (int): hidden layer unit to generate LQE
add_mean (bool): Whether to calculate the mean of top-k statistics
"""
def __init__(self, reg_topk=4, reg_channels=64, add_mean=True):
super(DGQP, self).__init__()
self.reg_topk = reg_topk
self.reg_channels = reg_channels
self.add_mean = add_mean
self.total_dim = reg_topk
if add_mean:
self.total_dim += 1
self.reg_conv1 = self.add_sublayer(
'dgqp_reg_conv1',
nn.Conv2D(
in_channels=4 * self.total_dim,
out_channels=self.reg_channels,
kernel_size=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(initializer=Constant(value=0))))
self.reg_conv2 = self.add_sublayer(
'dgqp_reg_conv2',
nn.Conv2D(
in_channels=self.reg_channels,
out_channels=1,
kernel_size=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(initializer=Constant(value=0))))
def forward(self, x):
"""Forward feature from the regression head to get integral result of
bounding box location.
Args:
x (Tensor): Features of the regression head, shape (N, 4*(n+1)),
n is self.reg_max.
Returns:
x (Tensor): Integral result of box locations, i.e., distance
offsets from the box center in four directions, shape (N, 4).
"""
N, _, H, W = x.shape[:]
prob = F.softmax(x.reshape([N, 4, -1, H, W]), axis=2)
prob_topk, _ = prob.topk(self.reg_topk, axis=2)
if self.add_mean:
stat = paddle.concat(
[prob_topk, prob_topk.mean(
axis=2, keepdim=True)], axis=2)
else:
stat = prob_topk
y = F.relu(self.reg_conv1(stat.reshape([N, -1, H, W])))
y = F.sigmoid(self.reg_conv2(y))
return y
@register
class GFLHead(nn.Layer):
"""
GFLHead
Args:
conv_feat (object): Instance of 'FCOSFeat'
num_classes (int): Number of classes
fpn_stride (list): The stride of each FPN Layer
prior_prob (float): Used to set the bias init for the class prediction layer
loss_qfl (object):
loss_dfl (object):
loss_bbox (object):
reg_max: Max value of integral set :math: `{0, ..., reg_max}`
n QFL setting. Default: 16.
"""
__inject__ = [
'conv_feat', 'dgqp_module', 'loss_qfl', 'loss_dfl', 'loss_bbox', 'nms'
]
__shared__ = ['num_classes']
def __init__(self,
conv_feat='FCOSFeat',
dgqp_module=None,
num_classes=80,
fpn_stride=[8, 16, 32, 64, 128],
prior_prob=0.01,
loss_qfl='QualityFocalLoss',
loss_dfl='DistributionFocalLoss',
loss_bbox='GIoULoss',
reg_max=16,
feat_in_chan=256,
nms=None,
nms_pre=1000,
cell_offset=0):
super(GFLHead, self).__init__()
self.conv_feat = conv_feat
self.dgqp_module = dgqp_module
self.num_classes = num_classes
self.fpn_stride = fpn_stride
self.prior_prob = prior_prob
self.loss_qfl = loss_qfl
self.loss_dfl = loss_dfl
self.loss_bbox = loss_bbox
self.reg_max = reg_max
self.feat_in_chan = feat_in_chan
self.nms = nms
self.nms_pre = nms_pre
self.cell_offset = cell_offset
self.use_sigmoid = self.loss_qfl.use_sigmoid
if self.use_sigmoid:
self.cls_out_channels = self.num_classes
else:
self.cls_out_channels = self.num_classes + 1
conv_cls_name = "gfl_head_cls"
bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
self.gfl_head_cls = self.add_sublayer(
conv_cls_name,
nn.Conv2D(
in_channels=self.feat_in_chan,
out_channels=self.cls_out_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(
initializer=Constant(value=bias_init_value))))
conv_reg_name = "gfl_head_reg"
self.gfl_head_reg = self.add_sublayer(
conv_reg_name,
nn.Conv2D(
in_channels=self.feat_in_chan,
out_channels=4 * (self.reg_max + 1),
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(initializer=Constant(value=0))))
self.scales_regs = []
for i in range(len(self.fpn_stride)):
lvl = int(math.log(int(self.fpn_stride[i]), 2))
feat_name = 'p{}_feat'.format(lvl)
scale_reg = self.add_sublayer(feat_name, ScaleReg())
self.scales_regs.append(scale_reg)
self.distribution_project = Integral(self.reg_max)
def forward(self, fpn_feats):
assert len(fpn_feats) == len(
self.fpn_stride
), "The size of fpn_feats is not equal to size of fpn_stride"
cls_logits_list = []
bboxes_reg_list = []
for scale_reg, fpn_feat in zip(self.scales_regs, fpn_feats):
conv_cls_feat, conv_reg_feat = self.conv_feat(fpn_feat)
cls_logits = self.gfl_head_cls(conv_cls_feat)
bbox_reg = scale_reg(self.gfl_head_reg(conv_reg_feat))
if self.dgqp_module:
quality_score = self.dgqp_module(bbox_reg)
cls_logits = F.sigmoid(cls_logits) * quality_score
cls_logits_list.append(cls_logits)
bboxes_reg_list.append(bbox_reg)
return (cls_logits_list, bboxes_reg_list)
def _images_to_levels(self, target, num_level_anchors):
"""
Convert targets by image to targets by feature level.
"""
level_targets = []
start = 0
for n in num_level_anchors:
end = start + n
level_targets.append(target[:, start:end].squeeze(0))
start = end
return level_targets
def _grid_cells_to_center(self, grid_cells):
"""
Get center location of each gird cell
Args:
grid_cells: grid cells of a feature map
Returns:
center points
"""
cells_cx = (grid_cells[:, 2] + grid_cells[:, 0]) / 2
cells_cy = (grid_cells[:, 3] + grid_cells[:, 1]) / 2
return paddle.stack([cells_cx, cells_cy], axis=-1)
def get_loss(self, gfl_head_outs, gt_meta):
cls_logits, bboxes_reg = gfl_head_outs
num_level_anchors = [
featmap.shape[-2] * featmap.shape[-1] for featmap in cls_logits
]
grid_cells_list = self._images_to_levels(gt_meta['grid_cells'],
num_level_anchors)
labels_list = self._images_to_levels(gt_meta['labels'],
num_level_anchors)
label_weights_list = self._images_to_levels(gt_meta['label_weights'],
num_level_anchors)
bbox_targets_list = self._images_to_levels(gt_meta['bbox_targets'],
num_level_anchors)
num_total_pos = sum(gt_meta['pos_num'])
loss_bbox_list, loss_dfl_list, loss_qfl_list, avg_factor = [], [], [], []
for cls_score, bbox_pred, grid_cells, labels, label_weights, bbox_targets, stride in zip(
cls_logits, bboxes_reg, grid_cells_list, labels_list,
label_weights_list, bbox_targets_list, self.fpn_stride):
grid_cells = grid_cells.reshape([-1, 4])
cls_score = cls_score.transpose([0, 2, 3, 1]).reshape(
[-1, self.cls_out_channels])
bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
[-1, 4 * (self.reg_max + 1)])
bbox_targets = bbox_targets.reshape([-1, 4])
labels = labels.reshape([-1])
label_weights = label_weights.reshape([-1])
bg_class_ind = self.num_classes
pos_inds = paddle.nonzero(
paddle.logical_and((labels >= 0), (labels < bg_class_ind)),
as_tuple=False).squeeze(1)
score = np.zeros(labels.shape)
if len(pos_inds) > 0:
pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0)
pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0)
pos_grid_cells = paddle.gather(grid_cells, pos_inds, axis=0)
pos_grid_cell_centers = self._grid_cells_to_center(
pos_grid_cells) / stride
weight_targets = F.sigmoid(cls_score.detach())
weight_targets = paddle.gather(
weight_targets.max(axis=1), pos_inds, axis=0)
pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred)
pos_decode_bbox_pred = distance2bbox(pos_grid_cell_centers,
pos_bbox_pred_corners)
pos_decode_bbox_targets = pos_bbox_targets / stride
bbox_iou = bbox_overlaps(
pos_decode_bbox_pred.detach().numpy(),
pos_decode_bbox_targets.detach().numpy(),
is_aligned=True)
score[pos_inds.numpy()] = bbox_iou
pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1])
target_corners = bbox2distance(pos_grid_cell_centers,
pos_decode_bbox_targets,
self.reg_max).reshape([-1])
# regression loss
loss_bbox = paddle.sum(
self.loss_bbox(pos_decode_bbox_pred,
pos_decode_bbox_targets) *
weight_targets.mean(axis=-1))
# dfl loss
loss_dfl = self.loss_dfl(
pred_corners,
target_corners,
weight=weight_targets.unsqueeze(-1).expand([-1, 4]).reshape(
[-1]),
avg_factor=4.0)
else:
loss_bbox = bbox_pred.sum() * 0
loss_dfl = bbox_pred.sum() * 0
weight_targets = paddle.to_tensor([0])
# qfl loss
score = paddle.to_tensor(score)
loss_qfl = self.loss_qfl(
cls_score, (labels, score),
weight=label_weights,
avg_factor=num_total_pos)
loss_bbox_list.append(loss_bbox)
loss_dfl_list.append(loss_dfl)
loss_qfl_list.append(loss_qfl)
avg_factor.append(weight_targets.sum())
avg_factor = sum(avg_factor)
if avg_factor <= 0:
loss_qfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
loss_bbox = paddle.to_tensor(
0, dtype='float32', stop_gradient=False)
loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
else:
losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list))
losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list))
loss_qfl = sum(loss_qfl_list)
loss_bbox = sum(losses_bbox)
loss_dfl = sum(losses_dfl)
loss_states = dict(
loss_qfl=loss_qfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl)
return loss_states
def get_single_level_center_point(self, featmap_size, stride,
cell_offset=0):
"""
Generate pixel centers of a single stage feature map.
Args:
featmap_size: height and width of the feature map
stride: down sample stride of the feature map
Returns:
y and x of the center points
"""
h, w = featmap_size
x_range = (paddle.arange(w, dtype='float32') + cell_offset) * stride
y_range = (paddle.arange(h, dtype='float32') + cell_offset) * stride
y, x = paddle.meshgrid(y_range, x_range)
y = y.flatten()
x = x.flatten()
return y, x
def get_bboxes_single(self,
cls_scores,
bbox_preds,
img_shape,
scale_factor,
rescale=True,
cell_offset=0):
assert len(cls_scores) == len(bbox_preds)
mlvl_bboxes = []
mlvl_scores = []
for stride, cls_score, bbox_pred in zip(self.fpn_stride, cls_scores,
bbox_preds):
featmap_size = cls_score.shape[-2:]
y, x = self.get_single_level_center_point(
featmap_size, stride, cell_offset=cell_offset)
center_points = paddle.stack([x, y], axis=-1)
scores = F.sigmoid(
cls_score.transpose([1, 2, 0]).reshape(
[-1, self.cls_out_channels]))
bbox_pred = bbox_pred.transpose([1, 2, 0])
bbox_pred = self.distribution_project(bbox_pred) * stride
if scores.shape[0] > self.nms_pre:
max_scores = scores.max(axis=1)
_, topk_inds = max_scores.topk(self.nms_pre)
center_points = center_points.gather(topk_inds)
bbox_pred = bbox_pred.gather(topk_inds)
scores = scores.gather(topk_inds)
bboxes = distance2bbox(
center_points, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = paddle.concat(mlvl_bboxes)
if rescale:
# [h_scale, w_scale] to [w_scale, h_scale, w_scale, h_scale]
im_scale = paddle.concat([scale_factor[::-1], scale_factor[::-1]])
mlvl_bboxes /= im_scale
mlvl_scores = paddle.concat(mlvl_scores)
if self.use_sigmoid:
# add a dummy background class to the backend when use_sigmoid
padding = paddle.zeros([mlvl_scores.shape[0], 1])
mlvl_scores = paddle.concat([mlvl_scores, padding], axis=1)
mlvl_scores = mlvl_scores.transpose([1, 0])
return mlvl_bboxes, mlvl_scores
def decode(self, cls_scores, bbox_preds, im_shape, scale_factor,
cell_offset):
batch_bboxes = []
batch_scores = []
for img_id in range(cls_scores[0].shape[0]):
num_levels = len(cls_scores)
cls_score_list = [cls_scores[i][img_id] for i in range(num_levels)]
bbox_pred_list = [bbox_preds[i][img_id] for i in range(num_levels)]
bboxes, scores = self.get_bboxes_single(
cls_score_list,
bbox_pred_list,
im_shape[img_id],
scale_factor[img_id],
cell_offset=cell_offset)
batch_bboxes.append(bboxes)
batch_scores.append(scores)
batch_bboxes = paddle.stack(batch_bboxes, axis=0)
batch_scores = paddle.stack(batch_scores, axis=0)
return batch_bboxes, batch_scores
def post_process(self, gfl_head_outs, im_shape, scale_factor):
cls_scores, bboxes_reg = gfl_head_outs
bboxes, score = self.decode(cls_scores, bboxes_reg, im_shape,
scale_factor, self.cell_offset)
bbox_pred, bbox_num, _ = self.nms(bboxes, score)
return bbox_pred, bbox_num
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant
from ppdet.core.workspace import register
from ppdet.modeling.layers import ConvNormLayer
from ppdet.modeling.bbox_utils import distance2bbox, bbox2distance
from ppdet.data.transform.atss_assigner import bbox_overlaps
from .gfl_head import GFLHead
@register
class PicoFeat(nn.Layer):
"""
PicoFeat of PicoDet
Args:
feat_in (int): The channel number of input Tensor.
feat_out (int): The channel number of output Tensor.
num_convs (int): The convolution number of the LiteGFLFeat.
norm_type (str): Normalization type, 'bn'/'sync_bn'/'gn'.
"""
def __init__(self,
feat_in=256,
feat_out=96,
num_fpn_stride=3,
num_convs=2,
norm_type='bn',
share_cls_reg=False):
super(PicoFeat, self).__init__()
self.num_convs = num_convs
self.norm_type = norm_type
self.share_cls_reg = share_cls_reg
self.cls_convs = []
self.reg_convs = []
for stage_idx in range(num_fpn_stride):
cls_subnet_convs = []
reg_subnet_convs = []
for i in range(self.num_convs):
in_c = feat_in if i == 0 else feat_out
cls_conv_dw = self.add_sublayer(
'cls_conv_dw{}.{}'.format(stage_idx, i),
ConvNormLayer(
ch_in=in_c,
ch_out=feat_out,
filter_size=3,
stride=1,
groups=feat_out,
norm_type=norm_type,
bias_on=False,
lr_scale=2.))
cls_subnet_convs.append(cls_conv_dw)
cls_conv_pw = self.add_sublayer(
'cls_conv_pw{}.{}'.format(stage_idx, i),
ConvNormLayer(
ch_in=in_c,
ch_out=feat_out,
filter_size=1,
stride=1,
norm_type=norm_type,
bias_on=False,
lr_scale=2.))
cls_subnet_convs.append(cls_conv_pw)
if not self.share_cls_reg:
reg_conv_dw = self.add_sublayer(
'reg_conv_dw{}.{}'.format(stage_idx, i),
ConvNormLayer(
ch_in=in_c,
ch_out=feat_out,
filter_size=3,
stride=1,
groups=feat_out,
norm_type=norm_type,
bias_on=False,
lr_scale=2.))
reg_subnet_convs.append(reg_conv_dw)
reg_conv_pw = self.add_sublayer(
'reg_conv_pw{}.{}'.format(stage_idx, i),
ConvNormLayer(
ch_in=in_c,
ch_out=feat_out,
filter_size=1,
stride=1,
norm_type=norm_type,
bias_on=False,
lr_scale=2.))
reg_subnet_convs.append(reg_conv_pw)
self.cls_convs.append(cls_subnet_convs)
self.reg_convs.append(reg_subnet_convs)
def forward(self, fpn_feat, stage_idx):
assert stage_idx < len(self.cls_convs)
cls_feat = fpn_feat
reg_feat = fpn_feat
for i in range(len(self.cls_convs[stage_idx])):
cls_feat = F.leaky_relu(self.cls_convs[stage_idx][i](cls_feat), 0.1)
if not self.share_cls_reg:
reg_feat = F.leaky_relu(self.reg_convs[stage_idx][i](reg_feat),
0.1)
return cls_feat, reg_feat
@register
class PicoHead(GFLHead):
"""
PicoHead
Args:
conv_feat (object): Instance of 'LiteGFLFeat'
num_classes (int): Number of classes
fpn_stride (list): The stride of each FPN Layer
prior_prob (float): Used to set the bias init for the class prediction layer
loss_qfl (object):
loss_dfl (object):
loss_bbox (object):
reg_max: Max value of integral set :math: `{0, ..., reg_max}`
n QFL setting. Default: 16.
"""
__inject__ = [
'conv_feat', 'dgqp_module', 'loss_qfl', 'loss_dfl', 'loss_bbox', 'nms'
]
__shared__ = ['num_classes']
def __init__(self,
conv_feat='PicoFeat',
dgqp_module=None,
num_classes=80,
fpn_stride=[8, 16, 32],
prior_prob=0.01,
loss_qfl='QualityFocalLoss',
loss_dfl='DistributionFocalLoss',
loss_bbox='GIoULoss',
reg_max=16,
feat_in_chan=96,
nms=None,
nms_pre=1000,
cell_offset=0):
super(PicoHead, self).__init__(
conv_feat=conv_feat,
dgqp_module=dgqp_module,
num_classes=num_classes,
fpn_stride=fpn_stride,
prior_prob=prior_prob,
loss_qfl=loss_qfl,
loss_dfl=loss_dfl,
loss_bbox=loss_bbox,
reg_max=reg_max,
feat_in_chan=feat_in_chan,
nms=nms,
nms_pre=nms_pre,
cell_offset=cell_offset)
self.conv_feat = conv_feat
self.num_classes = num_classes
self.fpn_stride = fpn_stride
self.prior_prob = prior_prob
self.loss_qfl = loss_qfl
self.loss_dfl = loss_dfl
self.loss_bbox = loss_bbox
self.reg_max = reg_max
self.feat_in_chan = feat_in_chan
self.nms = nms
self.nms_pre = nms_pre
self.cell_offset = cell_offset
self.use_sigmoid = self.loss_qfl.use_sigmoid
if self.use_sigmoid:
self.cls_out_channels = self.num_classes
else:
self.cls_out_channels = self.num_classes + 1
bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
# Clear the super class initialization
self.gfl_head_cls = None
self.gfl_head_reg = None
self.scales_regs = None
self.head_cls_list = []
self.head_reg_list = []
for i in range(len(fpn_stride)):
head_cls = self.add_sublayer(
"head_cls" + str(i),
nn.Conv2D(
in_channels=self.feat_in_chan,
out_channels=self.cls_out_channels + 4 * (self.reg_max + 1)
if self.conv_feat.share_cls_reg else self.cls_out_channels,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(
initializer=Constant(value=bias_init_value))))
self.head_cls_list.append(head_cls)
if not self.conv_feat.share_cls_reg:
head_reg = self.add_sublayer(
"head_reg" + str(i),
nn.Conv2D(
in_channels=self.feat_in_chan,
out_channels=4 * (self.reg_max + 1),
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(initializer=Constant(value=0))))
self.head_reg_list.append(head_reg)
def forward(self, fpn_feats):
assert len(fpn_feats) == len(
self.fpn_stride
), "The size of fpn_feats is not equal to size of fpn_stride"
cls_logits_list = []
bboxes_reg_list = []
for i, fpn_feat in enumerate(fpn_feats):
conv_cls_feat, conv_reg_feat = self.conv_feat(fpn_feat, i)
if self.conv_feat.share_cls_reg:
cls_logits = self.head_cls_list[i](conv_cls_feat)
cls_score, bbox_pred = paddle.split(
cls_logits,
[self.cls_out_channels, 4 * (self.reg_max + 1)],
axis=1)
else:
cls_score = self.head_cls_list[i](conv_cls_feat)
bbox_pred = self.head_reg_list[i](conv_reg_feat)
if self.dgqp_module:
quality_score = self.dgqp_module(bbox_pred)
cls_score = F.sigmoid(cls_score) * quality_score
if not self.training:
cls_score = F.sigmoid(cls_score.transpose([0, 2, 3, 1]))
bbox_pred = self.distribution_project(
bbox_pred.transpose([0, 2, 3, 1])) * self.fpn_stride[i]
cls_logits_list.append(cls_score)
bboxes_reg_list.append(bbox_pred)
return (cls_logits_list, bboxes_reg_list)
def get_bboxes_single(self,
cls_scores,
bbox_preds,
img_shape,
scale_factor,
rescale=True,
cell_offset=0):
assert len(cls_scores) == len(bbox_preds)
mlvl_bboxes = []
mlvl_scores = []
for stride, cls_score, bbox_pred in zip(self.fpn_stride, cls_scores,
bbox_preds):
featmap_size = cls_score.shape[0:2]
y, x = self.get_single_level_center_point(
featmap_size, stride, cell_offset=cell_offset)
center_points = paddle.stack([x, y], axis=-1)
scores = cls_score.reshape([-1, self.cls_out_channels])
if scores.shape[0] > self.nms_pre:
max_scores = scores.max(axis=1)
_, topk_inds = max_scores.topk(self.nms_pre)
center_points = center_points.gather(topk_inds)
bbox_pred = bbox_pred.gather(topk_inds)
scores = scores.gather(topk_inds)
bboxes = distance2bbox(
center_points, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = paddle.concat(mlvl_bboxes)
if rescale:
# [h_scale, w_scale] to [w_scale, h_scale, w_scale, h_scale]
im_scale = paddle.concat([scale_factor[::-1], scale_factor[::-1]])
mlvl_bboxes /= im_scale
mlvl_scores = paddle.concat(mlvl_scores)
mlvl_scores = mlvl_scores.transpose([1, 0])
return mlvl_bboxes, mlvl_scores
def decode(self, cls_scores, bbox_preds, im_shape, scale_factor,
cell_offset):
batch_bboxes = []
batch_scores = []
batch_size = cls_scores[0].shape[0]
for img_id in range(batch_size):
num_levels = len(cls_scores)
cls_score_list = [cls_scores[i][img_id] for i in range(num_levels)]
bbox_pred_list = [
bbox_preds[i].reshape([batch_size, -1, 4])[img_id]
for i in range(num_levels)
]
bboxes, scores = self.get_bboxes_single(
cls_score_list,
bbox_pred_list,
im_shape[img_id],
scale_factor[img_id],
cell_offset=cell_offset)
batch_bboxes.append(bboxes)
batch_scores.append(scores)
batch_bboxes = paddle.stack(batch_bboxes, axis=0)
batch_scores = paddle.stack(batch_scores, axis=0)
return batch_bboxes, batch_scores
def post_process(self, gfl_head_outs, im_shape, scale_factor):
cls_scores, bboxes_reg = gfl_head_outs
bboxes, score = self.decode(cls_scores, bboxes_reg, im_shape,
scale_factor, self.cell_offset)
bbox_pred, bbox_num, _ = self.nms(bboxes, score)
return bbox_pred, bbox_num
......@@ -22,6 +22,7 @@ from . import ctfocal_loss
from . import keypoint_loss
from . import jde_loss
from . import fairmot_loss
from . import gfocal_loss
from . import detr_loss
from . import sparsercnn_loss
......@@ -35,5 +36,6 @@ from .ctfocal_loss import *
from .keypoint_loss import *
from .jde_loss import *
from .fairmot_loss import *
from .gfocal_loss import *
from .detr_loss import *
from .sparsercnn_loss import *
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling import ops
__all__ = ['QualityFocalLoss', 'DistributionFocalLoss']
def quality_focal_loss(pred, target, beta=2.0, use_sigmoid=True):
"""
Quality Focal Loss (QFL) is from `Generalized Focal Loss: Learning
Qualified and Distributed Bounding Boxes for Dense Object Detection
<https://arxiv.org/abs/2006.04388>`_.
Args:
pred (Tensor): Predicted joint representation of classification
and quality (IoU) estimation with shape (N, C), C is the number of
classes.
target (tuple([Tensor])): Target category label with shape (N,)
and target quality label with shape (N,).
beta (float): The beta parameter for calculating the modulating factor.
Defaults to 2.0.
Returns:
Tensor: Loss tensor with shape (N,).
"""
assert len(target) == 2, """target for QFL must be a tuple of two elements,
including category label and quality label, respectively"""
# label denotes the category id, score denotes the quality score
label, score = target
if use_sigmoid:
func = F.binary_cross_entropy_with_logits
else:
func = F.binary_cross_entropy
# negatives are supervised by 0 quality score
pred_sigmoid = F.sigmoid(pred) if use_sigmoid else pred
scale_factor = pred_sigmoid
zerolabel = paddle.zeros(pred.shape, dtype='float32')
loss = func(pred, zerolabel, reduction='none') * scale_factor.pow(beta)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = pred.shape[1]
pos = paddle.logical_and((label >= 0),
(label < bg_class_ind)).nonzero().squeeze(1)
if pos.shape[0] == 0:
return loss.sum(axis=1)
pos_label = paddle.gather(label, pos, axis=0)
pos_mask = np.zeros(pred.shape, dtype=np.int32)
pos_mask[pos.numpy(), pos_label.numpy()] = 1
pos_mask = paddle.to_tensor(pos_mask, dtype='bool')
score = score.unsqueeze(-1).expand([-1, pred.shape[1]]).cast('float32')
# positives are supervised by bbox quality (IoU) score
scale_factor_new = score - pred_sigmoid
loss_pos = func(
pred, score, reduction='none') * scale_factor_new.abs().pow(beta)
loss = loss * paddle.logical_not(pos_mask) + loss_pos * pos_mask
loss = loss.sum(axis=1)
return loss
def distribution_focal_loss(pred, label):
"""Distribution Focal Loss (DFL) is from `Generalized Focal Loss: Learning
Qualified and Distributed Bounding Boxes for Dense Object Detection
<https://arxiv.org/abs/2006.04388>`_.
Args:
pred (Tensor): Predicted general distribution of bounding boxes
(before softmax) with shape (N, n+1), n is the max value of the
integral set `{0, ..., n}` in paper.
label (Tensor): Target distance label for bounding boxes with
shape (N,).
Returns:
Tensor: Loss tensor with shape (N,).
"""
dis_left = label.cast('int64')
dis_right = dis_left + 1
weight_left = dis_right.cast('float32') - label
weight_right = label - dis_left.cast('float32')
loss = F.cross_entropy(pred, dis_left, reduction='none') * weight_left \
+ F.cross_entropy(pred, dis_right, reduction='none') * weight_right
return loss
@register
@serializable
class QualityFocalLoss(nn.Layer):
r"""Quality Focal Loss (QFL) is a variant of `Generalized Focal Loss:
Learning Qualified and Distributed Bounding Boxes for Dense Object
Detection <https://arxiv.org/abs/2006.04388>`_.
Args:
use_sigmoid (bool): Whether sigmoid operation is conducted in QFL.
Defaults to True.
beta (float): The beta parameter for calculating the modulating factor.
Defaults to 2.0.
reduction (str): Options are "none", "mean" and "sum".
loss_weight (float): Loss weight of current loss.
"""
def __init__(self,
use_sigmoid=True,
beta=2.0,
reduction='mean',
loss_weight=1.0):
super(QualityFocalLoss, self).__init__()
self.use_sigmoid = use_sigmoid
self.beta = beta
assert reduction in ('none', 'mean', 'sum')
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None):
"""Forward function.
Args:
pred (Tensor): Predicted joint representation of
classification and quality (IoU) estimation with shape (N, C),
C is the number of classes.
target (tuple([Tensor])): Target category label with shape
(N,) and target quality label with shape (N,).
weight (Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
loss = self.loss_weight * quality_focal_loss(
pred, target, beta=self.beta, use_sigmoid=self.use_sigmoid)
if weight is not None:
loss = loss * weight
if avg_factor is None:
if self.reduction == 'none':
return loss
elif self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else:
# if reduction is mean, then average the loss by avg_factor
if self.reduction == 'mean':
loss = loss.sum() / avg_factor
# if reduction is 'none', then do nothing, otherwise raise an error
elif self.reduction != 'none':
raise ValueError(
'avg_factor can not be used with reduction="sum"')
return loss
@register
@serializable
class DistributionFocalLoss(nn.Layer):
"""Distribution Focal Loss (DFL) is a variant of `Generalized Focal Loss:
Learning Qualified and Distributed Bounding Boxes for Dense Object
Detection <https://arxiv.org/abs/2006.04388>`_.
Args:
reduction (str): Options are `'none'`, `'mean'` and `'sum'`.
loss_weight (float): Loss weight of current loss.
"""
def __init__(self, reduction='mean', loss_weight=1.0):
super(DistributionFocalLoss, self).__init__()
assert reduction in ('none', 'mean', 'sum')
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None):
"""Forward function.
Args:
pred (Tensor): Predicted general distribution of bounding
boxes (before softmax) with shape (N, n+1), n is the max value
of the integral set `{0, ..., n}` in paper.
target (Tensor): Target distance label for bounding boxes
with shape (N,).
weight (Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
loss = self.loss_weight * distribution_focal_loss(pred, target)
if weight is not None:
loss = loss * weight
if avg_factor is None:
if self.reduction == 'none':
return loss
elif self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else:
# if reduction is mean, then average the loss by avg_factor
if self.reduction == 'mean':
loss = loss.sum() / avg_factor
# if reduction is 'none', then do nothing, otherwise raise an error
elif self.reduction != 'none':
raise ValueError(
'avg_factor can not be used with reduction="sum"')
return loss
......@@ -17,6 +17,7 @@ from . import yolo_fpn
from . import hrfpn
from . import ttf_fpn
from . import centernet_fpn
from . import pan
from .fpn import *
from .yolo_fpn import *
......@@ -24,3 +25,4 @@ from .hrfpn import *
from .ttf_fpn import *
from .centernet_fpn import *
from .blazeface_fpn import *
from .pan import *
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import XavierUniform
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ..shape_spec import ShapeSpec
__all__ = ['PAN']
@register
@serializable
class PAN(nn.Layer):
"""
Path Aggregation Network, see https://arxiv.org/abs/1803.01534
Args:
in_channels (list[int]): input channels of each level which can be
derived from the output shape of backbone by from_config
out_channel (list[int]): output channel of each level
spatial_scales (list[float]): the spatial scales between input feature
maps and original input image which can be derived from the output
shape of backbone by from_config
has_extra_convs (bool): whether to add extra conv to the last level.
default False
extra_stage (int): the number of extra stages added to the last level.
default 1
use_c5 (bool): Whether to use c5 as the input of extra stage,
otherwise p5 is used. default True
norm_type (string|None): The normalization type in FPN module. If
norm_type is None, norm will not be used after conv and if
norm_type is string, bn, gn, sync_bn are available. default None
norm_decay (float): weight decay for normalization layer weights.
default 0.
freeze_norm (bool): whether to freeze normalization layer.
default False
relu_before_extra_convs (bool): whether to add relu before extra convs.
default False
"""
def __init__(self,
in_channels,
out_channel,
spatial_scales=[0.125, 0.0625, 0.03125],
start_level=0,
end_level=-1,
norm_type=None):
super(PAN, self).__init__()
self.out_channel = out_channel
self.num_ins = len(in_channels)
self.spatial_scales = spatial_scales
if end_level == -1:
self.end_level = self.num_ins
else:
# if end_level < inputs, no extra level is allowed
self.end_level = end_level
assert end_level <= len(in_channels)
self.start_level = start_level
self.norm_type = norm_type
self.lateral_convs = []
for i in range(self.start_level, self.end_level):
in_c = in_channels[i - self.start_level]
if self.norm_type is not None:
lateral = self.add_sublayer(
'pan_lateral' + str(i),
ConvNormLayer(
ch_in=in_c,
ch_out=self.out_channel,
filter_size=1,
stride=1,
norm_type=self.norm_type,
norm_decay=self.norm_decay,
freeze_norm=self.freeze_norm,
initializer=XavierUniform(fan_out=in_c)))
else:
lateral = self.add_sublayer(
'pan_lateral' + str(i),
nn.Conv2D(
in_channels=in_c,
out_channels=self.out_channel,
kernel_size=1,
weight_attr=ParamAttr(
initializer=XavierUniform(fan_out=in_c))))
self.lateral_convs.append(lateral)
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
def forward(self, body_feats):
laterals = []
for i, lateral_conv in enumerate(self.lateral_convs):
laterals.append(lateral_conv(body_feats[i + self.start_level]))
num_levels = len(laterals)
for i in range(1, num_levels):
lvl = num_levels - i
upsample = F.interpolate(
laterals[lvl],
scale_factor=2.,
mode='bilinear', )
laterals[lvl - 1] += upsample
outs = [laterals[i] for i in range(num_levels)]
for i in range(0, num_levels - 1):
outs[i + 1] += F.interpolate(
outs[i], scale_factor=0.5, mode='bilinear')
return outs
@property
def out_shape(self):
return [
ShapeSpec(
channels=self.out_channel, stride=1. / s)
for s in self.spatial_scales
]
......@@ -55,5 +55,15 @@ class TestSSD(TestFasterRCNN):
self.cfg_file = 'configs/ssd/ssd_vgg16_300_240e_voc.yml'
class TestGFL(TestFasterRCNN):
def set_config(self):
self.cfg_file = 'configs/gfl/gfl_r50_fpn_1x_coco.yml'
class TestPicoDet(TestFasterRCNN):
def set_config(self):
self.cfg_file = 'configs/picodet/picodet_s_shufflenetv2_320_coco.yml'
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册