infer.py 21.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
G
Guanghua Yu 已提交
18
import glob
Q
qingqing01 已提交
19 20 21 22 23 24 25 26 27
from functools import reduce

from PIL import Image
import cv2
import numpy as np
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

28
from benchmark_utils import PaddleInferBenchmark
G
Guanghua Yu 已提交
29 30
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride
from visualize import visualize_box_mask
31
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
32

Q
qingqing01 已提交
33 34 35 36 37
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
F
Feng Ni 已提交
38
    'FCOS',
G
Guanghua Yu 已提交
39
    'SOLOv2',
F
Feng Ni 已提交
40
    'TTFNet',
C
cnn 已提交
41
    'S2ANet',
Q
qingqing01 已提交
42 43 44 45 46 47 48 49 50 51
}


class Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
52 53 54 55 56
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
Q
qingqing01 已提交
57 58 59 60 61 62 63 64
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
65 66 67 68
                 use_dynamic_shape=False,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
69 70 71
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
72
        self.pred_config = pred_config
73
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
74 75 76
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
77 78 79 80
            use_gpu=use_gpu,
            use_dynamic_shape=use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
81
            trt_opt_shape=trt_opt_shape,
82 83 84
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
85 86
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    def preprocess(self, im):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
        im, im_info = preprocess(im, preprocess_ops,
                                 self.pred_config.input_shape)
        inputs = create_inputs(im, im_info)
        return inputs

    def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5):
        # postprocess output of predictor
        results = {}
        if self.pred_config.arch in ['Face']:
            h, w = inputs['im_shape']
            scale_y, scale_x = inputs['scale_factor']
            w, h = float(h) / scale_y, float(w) / scale_x
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        results['boxes'] = np_boxes
        if np_masks is not None:
            results['masks'] = np_masks
        return results

G
Guanghua Yu 已提交
115
    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
116 117 118 119 120 121 122 123
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
124
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
125
        '''
126
        self.det_times.postprocess_time_s.start()
Q
qingqing01 已提交
127 128 129 130 131 132
        inputs = self.preprocess(image)
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
133
        self.det_times.postprocess_time_s.end()
Q
qingqing01 已提交
134 135 136 137 138
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
139
            if self.pred_config.mask:
Q
qingqing01 已提交
140 141 142
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

143
        self.det_times.inference_time_s.start()
Q
qingqing01 已提交
144 145 146 147 148
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
149
            if self.pred_config.mask:
Q
qingqing01 已提交
150 151
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
152
        self.det_times.inference_time_s.end(repeats=repeats)
Q
qingqing01 已提交
153

154
        self.det_times.postprocess_time_s.start()
Q
qingqing01 已提交
155
        results = []
G
Guanghua Yu 已提交
156 157 158 159 160 161
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
            results = {'boxes': np.array([])}
        else:
            results = self.postprocess(
                np_boxes, np_masks, inputs, threshold=threshold)
162
        self.det_times.postprocess_time_s.end()
G
Guanghua Yu 已提交
163
        self.det_times.img_num += 1
Q
qingqing01 已提交
164 165 166
        return results


G
Guanghua Yu 已提交
167 168 169 170 171 172 173
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
174 175 176 177
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
178 179 180 181 182 183 184 185
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
186 187 188 189
                 use_dynamic_shape=False,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
190 191 192
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
193
        self.pred_config = pred_config
194
        self.predictor, self.config = load_predictor(
G
Guanghua Yu 已提交
195 196 197
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
198 199 200 201
            use_gpu=use_gpu,
            use_dynamic_shape=use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
202
            trt_opt_shape=trt_opt_shape,
203 204 205
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
206 207 208
        self.det_times = Timer()

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
209 210 211 212 213
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
214 215 216
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
217
        '''
218
        self.det_times.postprocess_time_s.start()
G
Guanghua Yu 已提交
219 220 221 222 223 224
        inputs = self.preprocess(image)
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
225
        self.det_times.postprocess_time_s.end()
G
Guanghua Yu 已提交
226 227 228 229 230
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
231
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
232
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
233 234
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
235

236
        self.det_times.inference_time_s.start()
G
Guanghua Yu 已提交
237 238 239 240 241
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
242
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
243
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
244 245
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
246
        self.det_times.inference_time_s.end(repeats=repeats)
G
Guanghua Yu 已提交
247
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
248

G
Guanghua Yu 已提交
249
        return dict(segm=np_segms, label=np_label, score=np_score)
G
Guanghua Yu 已提交
250 251


Q
qingqing01 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
def create_inputs(im, im_info):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = np.array((im, )).astype('float32')
    inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32')
    inputs['scale_factor'] = np.array(
        (im_info['scale_factor'], )).astype('float32')

    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
286 287 288
        self.mask = False
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
Q
qingqing01 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        self.input_shape = yml_conf['image_shape']
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
                   use_gpu=False,
316 317 318 319
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
320
                   trt_opt_shape=640,
321 322 323
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
324 325 326 327
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
        use_gpu (bool): whether use gpu
328
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
329 330 331 332
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
333 334
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
        ValueError: predict by TensorRT need use_gpu == True.
    """
    if not use_gpu and not run_mode == 'fluid':
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
    if use_gpu:
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
356
        config.switch_ir_optim(True)
Q
qingqing01 已提交
357 358
    else:
        config.disable_gpu()
359 360
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
361 362 363 364 365 366 367 368 369
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
370 371 372 373 374 375 376 377

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
378
            use_calib_mode=trt_calib_mode)
379 380 381 382 383 384 385 386

        if use_dynamic_shape:
            min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]}
            max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]}
            opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]}
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
387 388 389 390 391 392 393 394

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
395
    return predictor, config
Q
qingqing01 已提交
396 397


G
Guanghua Yu 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


G
Guanghua Yu 已提交
429
def visualize(image_file, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
430
    # visualize the predict result
G
Guanghua Yu 已提交
431
    im = visualize_box_mask(image_file, results, labels, threshold=threshold)
Q
qingqing01 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    img_name = os.path.split(image_file)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, img_name)
    im.save(out_path, quality=95)
    print("save result to: " + out_path)


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


G
Guanghua Yu 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
def predict_image(detector, image_list):
    for i, img_file in enumerate(image_list):
        if FLAGS.run_benchmark:
            detector.predict(img_file, FLAGS.threshold, warmup=10, repeats=10)
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            results = detector.predict(img_file, FLAGS.threshold)
            visualize(
                img_file,
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
        use_gpu=FLAGS.use_gpu,
511 512 513 514
        run_mode=FLAGS.run_mode,
        use_dynamic_shape=FLAGS.use_dynamic_shape,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
515
        trt_opt_shape=FLAGS.trt_opt_shape,
516 517 518
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
519 520 521 522 523
    if pred_config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            pred_config,
            FLAGS.model_dir,
            use_gpu=FLAGS.use_gpu,
524 525 526 527
            run_mode=FLAGS.run_mode,
            use_dynamic_shape=FLAGS.use_dynamic_shape,
            trt_min_shape=FLAGS.trt_min_shape,
            trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
528
            trt_opt_shape=FLAGS.trt_opt_shape,
529 530 531
            trt_calib_mode=FLAGS.trt_calib_mode,
            cpu_threads=FLAGS.cpu_threads,
            enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
532

Q
qingqing01 已提交
533
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
534
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
535
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
536 537 538 539 540 541 542 543
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
544 545
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
G
Guanghua Yu 已提交
546 547
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
548 549 550 551 552

            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
553 554
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
555 556 557 558 559 560
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
561 562
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
563
            det_log('Det')
Q
qingqing01 已提交
564 565 566 567


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
568
    parser = argsparser()
Q
qingqing01 已提交
569 570 571 572
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)

    main()