infer.py 24.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
G
Guanghua Yu 已提交
18
import glob
Q
qingqing01 已提交
19 20 21 22 23
from functools import reduce

from PIL import Image
import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

29
from benchmark_utils import PaddleInferBenchmark
G
Guanghua Yu 已提交
30 31
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride
from visualize import visualize_box_mask
32
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
33

Q
qingqing01 已提交
34 35 36 37 38
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
39
    'Face',
F
Feng Ni 已提交
40
    'FCOS',
G
Guanghua Yu 已提交
41
    'SOLOv2',
F
Feng Ni 已提交
42
    'TTFNet',
C
cnn 已提交
43
    'S2ANet',
Q
qingqing01 已提交
44 45 46 47 48 49 50 51
}


class Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
52
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
Q
qingqing01 已提交
53
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
54
        batch_size (int): size of pre batch in inference
55 56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
Q
qingqing01 已提交
59 60 61 62 63 64
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
65
                 device='CPU',
Q
qingqing01 已提交
66
                 run_mode='fluid',
67
                 batch_size=1,
68 69 70
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
71 72 73
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
74
        self.pred_config = pred_config
75
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
76 77
            model_dir,
            run_mode=run_mode,
78
            batch_size=batch_size,
Q
qingqing01 已提交
79
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
80
            device=device,
81
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
82 83
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
84
            trt_opt_shape=trt_opt_shape,
85 86 87
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
88 89
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
90

C
cnn 已提交
91
    def preprocess(self, image_list):
Q
qingqing01 已提交
92 93 94 95 96
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
97 98 99 100

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
101
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
102 103 104
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
Q
qingqing01 已提交
105 106
        return inputs

C
cnn 已提交
107 108 109 110 111 112
    def postprocess(self,
                    np_boxes,
                    np_masks,
                    inputs,
                    np_boxes_num,
                    threshold=0.5):
Q
qingqing01 已提交
113 114 115
        # postprocess output of predictor
        results = {}
        results['boxes'] = np_boxes
C
cnn 已提交
116
        results['boxes_num'] = np_boxes_num
Q
qingqing01 已提交
117 118 119 120
        if np_masks is not None:
            results['masks'] = np_masks
        return results

C
cnn 已提交
121
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
122 123
        '''
        Args:
C
cnn 已提交
124
            image_list (list): ,list of image
Q
qingqing01 已提交
125 126 127 128 129
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
130
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
131
        '''
132
        self.det_times.preprocess_time_s.start()
C
cnn 已提交
133
        inputs = self.preprocess(image_list)
134
        self.det_times.preprocess_time_s.end()
Q
qingqing01 已提交
135 136 137 138 139 140 141 142 143 144
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
145
            if self.pred_config.mask:
Q
qingqing01 已提交
146 147 148
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

149
        self.det_times.inference_time_s.start()
Q
qingqing01 已提交
150 151 152 153 154
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
155 156
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
157
            if self.pred_config.mask:
Q
qingqing01 已提交
158 159
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
160
        self.det_times.inference_time_s.end(repeats=repeats)
Q
qingqing01 已提交
161

162
        self.det_times.postprocess_time_s.start()
Q
qingqing01 已提交
163
        results = []
G
Guanghua Yu 已提交
164 165
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
166
            results = {'boxes': np.array([[]]), 'boxes_num': [0]}
G
Guanghua Yu 已提交
167 168
        else:
            results = self.postprocess(
C
cnn 已提交
169
                np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold)
170
        self.det_times.postprocess_time_s.end()
C
cnn 已提交
171
        self.det_times.img_num += len(image_list)
Q
qingqing01 已提交
172 173
        return results

W
wangguanzhong 已提交
174 175 176
    def get_timer(self):
        return self.det_times

Q
qingqing01 已提交
177

G
Guanghua Yu 已提交
178 179 180 181 182
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
183
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
G
Guanghua Yu 已提交
184
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
185
        batch_size (int): size of pre batch in inference
186 187 188
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
189 190 191 192 193 194
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
195
                 device='CPU',
G
Guanghua Yu 已提交
196
                 run_mode='fluid',
197
                 batch_size=1,
198 199 200
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
201 202 203
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
204
        self.pred_config = pred_config
205
        self.predictor, self.config = load_predictor(
G
Guanghua Yu 已提交
206 207
            model_dir,
            run_mode=run_mode,
208
            batch_size=batch_size,
G
Guanghua Yu 已提交
209
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
210
            device=device,
211
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
212 213
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
214
            trt_opt_shape=trt_opt_shape,
215 216 217
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
218
        self.det_times = Timer()
219
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
G
Guanghua Yu 已提交
220 221

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
222 223 224 225 226
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
227 228 229
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
230
        '''
231
        self.det_times.preprocess_time_s.start()
G
Guanghua Yu 已提交
232
        inputs = self.preprocess(image)
233
        self.det_times.preprocess_time_s.end()
G
Guanghua Yu 已提交
234 235 236 237 238 239 240 241
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
242 243
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
244 245
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
246
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
247
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
248 249
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
250
        self.det_times.inference_time_s.start()
G
Guanghua Yu 已提交
251 252 253
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
254 255
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
256 257
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
258
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
259
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
260 261
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
262
        self.det_times.inference_time_s.end(repeats=repeats)
G
Guanghua Yu 已提交
263
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
264

W
wangguanzhong 已提交
265 266 267 268 269
        return dict(
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
G
Guanghua Yu 已提交
270 271


C
cnn 已提交
272
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
273 274
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
275 276
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
277 278 279 280 281
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    im_shape = []
    scale_factor = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

    origin_scale_factor = np.concatenate(scale_factor, axis=0)

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    padding_imgs_shape = []
    padding_imgs_scale = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
        padding_imgs_shape.append(
            np.array([max_shape_h, max_shape_w]).astype('float32'))
        rescale = [
            float(max_shape_h) / float(im_h), float(max_shape_w) / float(im_w)
        ]
        padding_imgs_scale.append(np.array(rescale).astype('float32'))
    inputs['image'] = np.stack(padding_imgs, axis=0)
    inputs['im_shape'] = np.stack(padding_imgs_shape, axis=0)
    inputs['scale_factor'] = origin_scale_factor
Q
qingqing01 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
330
        self.mask = False
331
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
332 333
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
Q
qingqing01 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
359
                   device='CPU',
360 361 362 363
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
364
                   trt_opt_shape=640,
365 366 367
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
368 369 370
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
371
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
372
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
373 374 375 376
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
377 378
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
379 380 381
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
382
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
383
    """
G
Guanghua Yu 已提交
384
    if device != 'GPU' and run_mode != 'fluid':
Q
qingqing01 已提交
385
        raise ValueError(
G
Guanghua Yu 已提交
386 387
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
388 389 390
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
391
    if device == 'GPU':
Q
qingqing01 已提交
392 393 394
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
395
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
396 397
    elif device == 'XPU':
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
398 399
    else:
        config.disable_gpu()
400 401
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
402 403 404 405 406 407 408 409 410
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
411

G
Guanghua Yu 已提交
412 413 414 415 416
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
417 418 419 420 421 422 423
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
424
            use_calib_mode=trt_calib_mode)
425 426

        if use_dynamic_shape:
427 428 429 430 431 432 433 434 435
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
436 437 438
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
439 440 441 442 443 444 445 446

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
447
    return predictor, config
Q
qingqing01 已提交
448 449


G
Guanghua Yu 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


C
cnn 已提交
481
def visualize(image_list, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
482
    # visualize the predict result
C
cnn 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495
    start_idx = 0
    for idx, image_file in enumerate(image_list):
        im_bboxes_num = results['boxes_num'][idx]
        im_results = {}
        if 'boxes' in results:
            im_results['boxes'] = results['boxes'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'masks' in results:
            im_results['masks'] = results['masks'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'segm' in results:
            im_results['segm'] = results['segm'][start_idx:start_idx +
                                                 im_bboxes_num, :]
W
wangguanzhong 已提交
496 497 498 499 500 501 502
        if 'label' in results:
            im_results['label'] = results['label'][start_idx:start_idx +
                                                   im_bboxes_num]
        if 'score' in results:
            im_results['score'] = results['score'][start_idx:start_idx +
                                                   im_bboxes_num]

C
cnn 已提交
503 504 505 506 507 508 509 510 511
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
512 513 514 515 516 517 518 519 520


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


C
cnn 已提交
521 522 523 524 525 526
def predict_image(detector, image_list, batch_size=1):
    batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size)
    for i in range(batch_loop_cnt):
        start_index = i * batch_size
        end_index = min((i + 1) * batch_size, len(image_list))
        batch_image_list = image_list[start_index:end_index]
G
Guanghua Yu 已提交
527
        if FLAGS.run_benchmark:
C
cnn 已提交
528 529
            detector.predict(
                batch_image_list, FLAGS.threshold, warmup=10, repeats=10)
G
Guanghua Yu 已提交
530 531 532 533
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
C
cnn 已提交
534
            print('Test iter {}'.format(i))
G
Guanghua Yu 已提交
535
        else:
C
cnn 已提交
536
            results = detector.predict(batch_image_list, FLAGS.threshold)
G
Guanghua Yu 已提交
537
            visualize(
C
cnn 已提交
538
                batch_image_list,
G
Guanghua Yu 已提交
539 540 541 542
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
543 544 545 546 547 548 549 550 551 552


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
C
cnn 已提交
553 554
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
Q
qingqing01 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
C
cnn 已提交
571
        results = detector.predict([frame], FLAGS.threshold)
Q
qingqing01 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
591
        device=FLAGS.device,
592
        run_mode=FLAGS.run_mode,
593
        batch_size=FLAGS.batch_size,
594 595
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
596
        trt_opt_shape=FLAGS.trt_opt_shape,
597 598 599
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
600 601 602 603
    if pred_config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            pred_config,
            FLAGS.model_dir,
G
Guanghua Yu 已提交
604
            device=FLAGS.device,
605
            run_mode=FLAGS.run_mode,
606
            batch_size=FLAGS.batch_size,
607 608
            trt_min_shape=FLAGS.trt_min_shape,
            trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
609
            trt_opt_shape=FLAGS.trt_opt_shape,
610 611 612
            trt_calib_mode=FLAGS.trt_calib_mode,
            cpu_threads=FLAGS.cpu_threads,
            enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
613

Q
qingqing01 已提交
614
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
615
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
616
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
617 618
    else:
        # predict from image
C
cnn 已提交
619 620
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
621
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
C
cnn 已提交
622
        predict_image(detector, img_list, FLAGS.batch_size)
G
Guanghua Yu 已提交
623 624 625 626
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
627 628
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
G
Guanghua Yu 已提交
629 630
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
631 632 633 634 635

            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
636 637
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
638 639
            }
            data_info = {
640
                'batch_size': FLAGS.batch_size,
641 642 643
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
644 645
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
646
            det_log('Det')
Q
qingqing01 已提交
647 648 649 650


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
651
    parser = argsparser()
Q
qingqing01 已提交
652 653
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
654 655 656 657
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
658 659

    main()