Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
80f1f748
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
80f1f748
编写于
5月 20, 2021
作者:
G
Guanghua Yu
提交者:
GitHub
5月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update slim models and benchmark (#3077)
* update slim models and benchmark
上级
571dcb34
变更
11
展开全部
隐藏空白更改
内联
并排
Showing
11 changed file
with
183 addition
and
29 deletion
+183
-29
configs/slim/README.md
configs/slim/README.md
+52
-22
configs/slim/prune/ppyolo_mbv3_large_prune_fpgm.yml
configs/slim/prune/ppyolo_mbv3_large_prune_fpgm.yml
+9
-0
configs/slim/prune/ppyolo_r50vd_prune_fpgm.yml
configs/slim/prune/ppyolo_r50vd_prune_fpgm.yml
+13
-0
configs/slim/prune/yolov3_darknet_prune_fpgm.yml
configs/slim/prune/yolov3_darknet_prune_fpgm.yml
+13
-0
configs/slim/quant/ppyolo_mbv3_large_qat.yml
configs/slim/quant/ppyolo_mbv3_large_qat.yml
+16
-0
configs/slim/quant/ppyolo_r50vd_qat_pact.yml
configs/slim/quant/ppyolo_r50vd_qat_pact.yml
+39
-0
configs/slim/quant/ppyolov2_r50vd_dcn_qat.yml
configs/slim/quant/ppyolov2_r50vd_dcn_qat.yml
+33
-0
configs/slim/quant/yolov3_mobilenet_v3_qat.yml
configs/slim/quant/yolov3_mobilenet_v3_qat.yml
+5
-5
deploy/README.md
deploy/README.md
+1
-1
ppdet/engine/trainer.py
ppdet/engine/trainer.py
+1
-1
ppdet/slim/__init__.py
ppdet/slim/__init__.py
+1
-0
未找到文件。
configs/slim/README.md
浏览文件 @
80f1f748
此差异已折叠。
点击以展开。
configs/slim/prune/ppyolo_mbv3_large_prune_fpgm.yml
0 → 100644
浏览文件 @
80f1f748
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams
slim
:
Pruner
Pruner
:
criterion
:
fpgm
pruned_params
:
[
'
conv2d_62.w_0'
,
'
conv2d_63.w_0'
,
'
conv2d_64.w_0'
,
'
conv2d_65.w_0'
,
'
conv2d_66.w_0'
,
'
conv2d_67.w_0'
]
pruned_ratios
:
[
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
]
print_params
:
True
configs/slim/prune/ppyolo_r50vd_prune_fpgm.yml
0 → 100644
浏览文件 @
80f1f748
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams
slim
:
Pruner
Pruner
:
criterion
:
fpgm
pruned_params
:
[
'
conv2d_56.w_0'
,
'
conv2d_57.w_0'
,
'
conv2d_58.w_0'
,
'
conv2d_59.w_0'
,
'
conv2d_60.w_0'
,
'
conv2d_61.w_0'
,
'
conv2d_63.w_0'
,
'
conv2d_64.w_0'
,
'
conv2d_65.w_0'
,
'
conv2d_66.w_0'
,
'
conv2d_67.w_0'
,
'
conv2d_68.w_0'
,
'
conv2d_70.w_0'
,
'
conv2d_71.w_0'
,
'
conv2d_72.w_0'
,
'
conv2d_73.w_0'
,
'
conv2d_74.w_0'
,
'
conv2d_75.w_0'
]
pruned_ratios
:
[
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.875
,
0.875
,
0.875
,
0.875
,
0.875
,
0.875
]
print_params
:
False
configs/slim/prune/yolov3_darknet_prune_fpgm.yml
0 → 100644
浏览文件 @
80f1f748
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams
slim
:
Pruner
Pruner
:
criterion
:
fpgm
pruned_params
:
[
'
conv2d_52.w_0'
,
'
conv2d_53.w_0'
,
'
conv2d_54.w_0'
,
'
conv2d_55.w_0'
,
'
conv2d_56.w_0'
,
'
conv2d_57.w_0'
,
'
conv2d_59.w_0'
,
'
conv2d_60.w_0'
,
'
conv2d_61.w_0'
,
'
conv2d_62.w_0'
,
'
conv2d_63.w_0'
,
'
conv2d_64.w_0'
,
'
conv2d_66.w_0'
,
'
conv2d_67.w_0'
,
'
conv2d_68.w_0'
,
'
conv2d_69.w_0'
,
'
conv2d_70.w_0'
,
'
conv2d_71.w_0'
]
pruned_ratios
:
[
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.75
,
0.875
,
0.875
,
0.875
,
0.875
,
0.875
,
0.875
]
print_params
:
True
configs/slim/quant/ppyolo_mbv3_large_qat.yml
0 → 100644
浏览文件 @
80f1f748
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams
slim
:
QAT
QAT
:
quant_config
:
{
'
weight_quantize_type'
:
'
channel_wise_abs_max'
,
'
activation_quantize_type'
:
'
moving_average_abs_max'
,
'
weight_bits'
:
8
,
'
activation_bits'
:
8
,
'
dtype'
:
'
int8'
,
'
window_size'
:
10000
,
'
moving_rate'
:
0.99
,
'
quantizable_layer_type'
:
[
'
Conv2D'
,
'
Linear'
]}
print_model
:
True
PPYOLOFPN
:
in_channels
:
[
160
,
368
]
coord_conv
:
true
conv_block_num
:
0
spp
:
true
drop_block
:
false
configs/slim/quant/ppyolo_r50vd_qat_pact.yml
0 → 100644
浏览文件 @
80f1f748
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams
slim
:
QAT
QAT
:
quant_config
:
{
'
activation_preprocess_type'
:
'
PACT'
,
'
weight_quantize_type'
:
'
channel_wise_abs_max'
,
'
activation_quantize_type'
:
'
moving_average_abs_max'
,
'
weight_bits'
:
8
,
'
activation_bits'
:
8
,
'
dtype'
:
'
int8'
,
'
window_size'
:
10000
,
'
moving_rate'
:
0.9
,
'
quantizable_layer_type'
:
[
'
Conv2D'
,
'
Linear'
]}
print_model
:
True
epoch
:
50
LearningRate
:
base_lr
:
0.0005
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
-
30
-
45
-
!LinearWarmup
start_factor
:
0.
steps
:
1000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0005
type
:
L2
PPYOLOFPN
:
coord_conv
:
true
block_size
:
3
keep_prob
:
0.9
spp
:
true
drop_block
:
false
configs/slim/quant/ppyolov2_r50vd_dcn_qat.yml
0 → 100644
浏览文件 @
80f1f748
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
slim
:
QAT
QAT
:
quant_config
:
{
'
activation_preprocess_type'
:
'
PACT'
,
'
weight_quantize_type'
:
'
channel_wise_abs_max'
,
'
activation_quantize_type'
:
'
moving_average_abs_max'
,
'
weight_bits'
:
8
,
'
activation_bits'
:
8
,
'
dtype'
:
'
int8'
,
'
window_size'
:
10000
,
'
moving_rate'
:
0.9
,
'
quantizable_layer_type'
:
[
'
Conv2D'
,
'
Linear'
]}
print_model
:
True
epoch
:
50
snapshot_epoch
:
8
LearningRate
:
base_lr
:
0.0005
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
-
30
-
45
-
!LinearWarmup
start_factor
:
0.
steps
:
2000
TrainReader
:
batch_size
:
8
PPYOLOPAN
:
drop_block
:
false
block_size
:
3
keep_prob
:
0.9
spp
:
true
configs/slim/quant/yolov3_mobilenet_v3_qat.yml
浏览文件 @
80f1f748
...
...
@@ -4,21 +4,21 @@ slim: QAT
QAT
:
quant_config
:
{
'
weight
_preprocess_type'
:
'
PACT'
,
'
activation
_preprocess_type'
:
'
PACT'
,
'
weight_quantize_type'
:
'
channel_wise_abs_max'
,
'
activation_quantize_type'
:
'
moving_average_abs_max'
,
'
weight_bits'
:
8
,
'
activation_bits'
:
8
,
'
dtype'
:
'
int8'
,
'
window_size'
:
10000
,
'
moving_rate'
:
0.9
,
'
quantizable_layer_type'
:
[
'
Conv2D'
,
'
Linear'
]}
print_model
:
True
epoch
:
3
0
epoch
:
5
0
LearningRate
:
base_lr
:
0.0001
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
-
2
5
-
28
-
3
5
-
45
-
!LinearWarmup
start_factor
:
0.
steps
:
2
000
steps
:
1
000
deploy/README.md
浏览文件 @
80f1f748
...
...
@@ -6,7 +6,7 @@
-
`C++`
语言部署 ,支持
`CPU`
、
`GPU`
和
`XPU`
环境,支持在
`Linux`
、
`Windows`
系统下部署,支持
`NV Jetson`
嵌入式设备上部署。请参考文档
[
C++部署
](
cpp/README.md
)
。
-
`TensorRT`
加速:请参考文档
[
TensorRT预测部署教程
](
TENSOR_RT.md
)
-
服务器端部署:使用
[
PaddleServing
](
./serving/README.md
)
部署。
-
手机移动端部署:使用
[
Paddle-Lite
](
https://github.com/PaddlePaddle/Paddle-Lite
)
在手机移动端部署。
-
手机移动端部署:使用
[
Paddle-Lite
](
./lite/README.md
)
在手机移动端部署。
## 1.模型导出
...
...
ppdet/engine/trainer.py
浏览文件 @
80f1f748
...
...
@@ -498,7 +498,7 @@ class Trainer(object):
}]
# dy2st and save model
if
'slim'
not
in
self
.
cfg
or
self
.
cfg
[
'slim'
]
!=
'QAT'
:
if
'slim'
not
in
self
.
cfg
or
self
.
cfg
[
'slim
_type
'
]
!=
'QAT'
:
static_model
=
paddle
.
jit
.
to_static
(
self
.
model
,
input_spec
=
input_spec
)
# NOTE: dy2st do not pruned program, but jit.save will prune program
...
...
ppdet/slim/__init__.py
浏览文件 @
80f1f748
...
...
@@ -53,6 +53,7 @@ def build_slim_model(cfg, slim_cfg, mode='train'):
if
mode
==
'train'
:
load_pretrain_weight
(
model
,
cfg
.
pretrain_weights
)
slim
=
create
(
cfg
.
slim
)
cfg
[
'slim_type'
]
=
cfg
.
slim
cfg
[
'model'
]
=
slim
(
model
)
cfg
[
'slim'
]
=
slim
if
mode
!=
'train'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录