infer.py 40.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29 30 31 32 33
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
38
from visualize import visualize_box_mask
39
from utils import argsparser, Timer, get_current_memory_mb, multiclass_nms, coco_clsid2catid
G
Guanghua Yu 已提交
40

Q
qingqing01 已提交
41 42
# Global dictionary
SUPPORT_MODELS = {
J
JYChen 已提交
43 44
    'YOLO', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', 'JDE',
    'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet', 'TOOD', 'RetinaNet',
J
JYChen 已提交
45
    'StrongBaseline', 'STGCN', 'YOLOX', 'PPHGNet', 'PPLCNet'
Q
qingqing01 已提交
46 47 48
}


W
wangguanzhong 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
66 67 68
class Detector(object):
    """
    Args:
69
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
70
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
71
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
72
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
73
        batch_size (int): size of pre batch in inference
74 75 76
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
77 78 79 80
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
81
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
82 83
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
84 85
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
86 87
    """

J
JYChen 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
103
        self.pred_config = self.set_config(model_dir)
104
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
105 106
            model_dir,
            run_mode=run_mode,
107
            batch_size=batch_size,
Q
qingqing01 已提交
108
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
109
            device=device,
110
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
111 112
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
113
            trt_opt_shape=trt_opt_shape,
114 115
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
116
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
117 118
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
119 120
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
121 122 123 124 125 126
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
127

C
cnn 已提交
128
    def preprocess(self, image_list):
Q
qingqing01 已提交
129 130 131 132 133
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
134 135 136 137

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
138
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
139 140 141
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
142 143 144
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
145 146 147 148
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
149

Q
qingqing01 已提交
150 151
        return inputs

W
wangguanzhong 已提交
152
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
153
        # postprocess output of predictor
W
wangguanzhong 已提交
154
        np_boxes_num = result['boxes_num']
155 156 157 158 159
        if sum(np_boxes_num) <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
180
    def predict(self, repeats=1):
Q
qingqing01 已提交
181 182
        '''
        Args:
W
wangguanzhong 已提交
183
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
184
        Returns:
W
wangguanzhong 已提交
185
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
186
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
187
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
188
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
189
        '''
W
wangguanzhong 已提交
190
        # model prediction
W
wangguanzhong 已提交
191
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
192 193 194 195 196
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
197 198
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
199
            if self.pred_config.mask:
Q
qingqing01 已提交
200 201
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
202 203 204 205 206 207 208 209 210 211 212 213
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
214
            if k not in ['masks', 'segm']:
W
wangguanzhong 已提交
215
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
216
        return results
Q
qingqing01 已提交
217

W
wangguanzhong 已提交
218 219
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
220

221 222 223 224 225 226
    def predict_image_slice(self,
                            img_list,
                            slice_size=[640, 640],
                            overlap_ratio=[0.25, 0.25],
                            combine_method='nms',
                            match_threshold=0.6,
F
Feng Ni 已提交
227 228 229
                            match_metric='ios',
                            run_benchmark=False,
                            repeats=1,
230
                            visual=True,
231
                            save_results=False):
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        # slice infer only support bs=1
        results = []
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
            logger.error(
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e
        num_classes = len(self.pred_config.labels)
        for i in range(len(img_list)):
            ori_image = img_list[i]
            slice_image_result = sahi.slicing.slice_image(
                image=ori_image,
                slice_height=slice_size[0],
                slice_width=slice_size[1],
                overlap_height_ratio=overlap_ratio[0],
                overlap_width_ratio=overlap_ratio[1])
            sub_img_num = len(slice_image_result)
            merged_bboxs = []
F
Feng Ni 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

            batch_image_list = [
                slice_image_result.images[_ind] for _ind in range(sub_img_num)
            ]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=50)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
284
                self.det_times.preprocess_time_s.start()
F
Feng Ni 已提交
285
                inputs = self.preprocess(batch_image_list)
286 287 288 289 290 291 292 293 294 295 296 297 298
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

F
Feng Ni 已提交
299 300 301 302
            st, ed = 0, result['boxes_num'][0]  # start_index, end_index
            for _ind in range(sub_img_num):
                boxes_num = result['boxes_num'][_ind]
                ed = boxes_num
303
                shift_amount = slice_image_result.starting_pixels[_ind]
F
Feng Ni 已提交
304 305 306 307 308 309
                result['boxes'][st:ed][:, 2:4] = result['boxes'][
                    st:ed][:, 2:4] + shift_amount
                result['boxes'][st:ed][:, 4:6] = result['boxes'][
                    st:ed][:, 4:6] + shift_amount
                merged_bboxs.append(result['boxes'][st:ed])
                st = ed
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

            merged_results = {'boxes': []}
            if combine_method == 'nms':
                final_boxes = multiclass_nms(
                    np.concatenate(merged_bboxs), num_classes, match_threshold,
                    match_metric)
                merged_results['boxes'] = np.concatenate(final_boxes)
            elif combine_method == 'concat':
                merged_results['boxes'] = np.concatenate(merged_bboxs)
            else:
                raise ValueError(
                    "Now only support 'nms' or 'concat' to fuse detection results."
                )
            merged_results['boxes_num'] = np.array(
                [len(merged_results['boxes'])], dtype=np.int32)

            if visual:
                visualize(
                    [ori_image],  # should be list
                    merged_results,
                    self.pred_config.labels,
                    output_dir=self.output_dir,
                    threshold=self.threshold)

            results.append(merged_results)
335
            print('Test iter {}'.format(i))
336 337

        results = self.merge_batch_result(results)
338 339 340 341
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                img_list, results, use_coco_category=FLAGS.use_coco_category)
342 343
        return results

W
wangguanzhong 已提交
344 345 346 347
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
348
                      visual=True,
349
                      save_results=False):
W
wangguanzhong 已提交
350
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
351
        results = []
W
wangguanzhong 已提交
352 353 354 355 356 357 358 359 360 361 362 363
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
364
                result = self.predict(repeats=50)  # warmup
W
wangguanzhong 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)

            results.append(result)
406
            print('Test iter {}'.format(i))
407

W
wangguanzhong 已提交
408
        results = self.merge_batch_result(results)
409 410 411 412
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                image_list, results, use_coco_category=FLAGS.use_coco_category)
Q
qingqing01 已提交
413 414
        return results

W
wangguanzhong 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
F
Feng Ni 已提交
432
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
W
wangguanzhong 已提交
433 434 435 436 437 438 439 440
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
L
lazyn1997 已提交
441
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
W
wangguanzhong 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    def save_coco_results(self, image_list, results, use_coco_category=False):
        bbox_results = []
        mask_results = []
        idx = 0
        print("Start saving coco json files...")
        for i, box_num in enumerate(results['boxes_num']):
            file_name = os.path.split(image_list[i])[-1]
            if use_coco_category:
                img_id = int(os.path.splitext(file_name)[0])
            else:
                img_id = i

            if 'boxes' in results:
                boxes = results['boxes'][idx:idx + box_num].tolist()
                bbox_results.extend([{
                    'image_id': img_id,
                    'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                    'file_name': file_name,
                    'bbox': [box[2], box[3], box[4] - box[2],
                         box[5] - box[3]],  # xyxy -> xywh
                    'score': box[1]} for box in boxes])

            if 'masks' in results:
                import pycocotools.mask as mask_util

                boxes = results['boxes'][idx:idx + box_num].tolist()
                masks = results['masks'][i][:box_num].astype(np.uint8)
                seg_res = []
                for box, mask in zip(boxes, masks):
                    rle = mask_util.encode(
                        np.array(
                            mask[:, :, None], dtype=np.uint8, order="F"))[0]
                    if 'counts' in rle:
                        rle['counts'] = rle['counts'].decode("utf8")
                    seg_res.append({
                        'image_id': img_id,
                        'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                        'file_name': file_name,
496
                        'segmentation': rle,
497 498
                        'score': box[1]})
                mask_results.extend(seg_res)
499

500
            idx += box_num
501

502 503 504 505 506 507 508 509 510 511
        if bbox_results:
            bbox_file = os.path.join(self.output_dir, "bbox.json")
            with open(bbox_file, 'w') as f:
                json.dump(bbox_results, f)
            print(f"The bbox result is saved to {bbox_file}")
        if mask_results:
            mask_file = os.path.join(self.output_dir, "mask.json")
            with open(mask_file, 'w') as f:
                json.dump(mask_results, f)
            print(f"The mask result is saved to {mask_file}")
512

Q
qingqing01 已提交
513

G
Guanghua Yu 已提交
514 515 516 517
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
518
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
519
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
520
        batch_size (int): size of pre batch in inference
521 522 523
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
524 525 526 527
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
528
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
529 530 531
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
532 533
    """

W
wangguanzhong 已提交
534 535
    def __init__(
            self,
G
Guanghua Yu 已提交
536
            model_dir,
W
wangguanzhong 已提交
537 538 539 540 541 542 543 544 545
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
546
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
547 548 549 550 551
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
552
            run_mode=run_mode,
553
            batch_size=batch_size,
554 555
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
556
            trt_opt_shape=trt_opt_shape,
557 558
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
559
            enable_mkldnn=enable_mkldnn,
560
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
561 562
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
563

W
wangguanzhong 已提交
564
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
565 566
        '''
        Args:
W
wangguanzhong 已提交
567
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
568
        Returns:
W
wangguanzhong 已提交
569
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
570 571
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
572 573 574 575 576
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
577 578
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
579 580
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
581
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
582
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
583 584
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
585

W
wangguanzhong 已提交
586
        result = dict(
W
wangguanzhong 已提交
587 588 589 590
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
591
        return result
G
Guanghua Yu 已提交
592 593


594 595 596 597 598
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
599
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
600 601 602 603 604 605 606
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
607 608
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
609 610
    """

W
wangguanzhong 已提交
611 612
    def __init__(
            self,
613
            model_dir,
W
wangguanzhong 已提交
614 615 616 617 618 619 620 621 622
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
623
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
624 625 626 627 628
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
629 630 631 632 633 634 635
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
636
            enable_mkldnn=enable_mkldnn,
637
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
654

W
wangguanzhong 已提交
655
    def predict(self, repeats=1):
656 657
        '''
        Args:
W
wangguanzhong 已提交
658
            repeats (int): repeat number for prediction
659
        Returns:
W
wangguanzhong 已提交
660
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
677 678
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
679 680


C
cnn 已提交
681
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
682 683
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
684 685
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
686 687 688 689 690
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
691 692
    im_shape = []
    scale_factor = []
693 694 695 696 697 698 699 700
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
701 702 703 704
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
705 706
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
707 708 709 710 711 712 713 714 715 716 717 718

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
738
        self.mask = False
739
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
740 741
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
742 743 744
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
745 746 747 748
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
749 750 751 752
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
776
                   run_mode='paddle',
Q
qingqing01 已提交
777
                   batch_size=1,
G
Guanghua Yu 已提交
778
                   device='CPU',
779 780 781 782
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
783
                   trt_opt_shape=640,
784 785
                   trt_calib_mode=False,
                   cpu_threads=1,
786
                   enable_mkldnn=False,
J
JYChen 已提交
787 788
                   enable_mkldnn_bfloat16=False,
                   delete_shuffle_pass=False):
Q
qingqing01 已提交
789 790 791
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
792
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
793
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
794 795 796 797
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
798 799
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
800 801
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
802 803 804
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
805
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
806
    """
807
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
808
        raise ValueError(
G
Guanghua Yu 已提交
809 810
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
811 812 813 814 815 816 817 818 819
    infer_model = os.path.join(model_dir, 'model.pdmodel')
    infer_params = os.path.join(model_dir, 'model.pdiparams')
    if not os.path.exists(infer_model):
        infer_model = os.path.join(model_dir, 'inference.pdmodel')
        infer_params = os.path.join(model_dir, 'inference.pdiparams')
        if not os.path.exists(infer_model):
            raise ValueError(
                "Cannot find any inference model in dir: {},".format(model_dir))
    config = Config(infer_model, infer_params)
G
Guanghua Yu 已提交
820
    if device == 'GPU':
Q
qingqing01 已提交
821 822 823
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
824
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
825
    elif device == 'XPU':
826
        config.enable_lite_engine()
G
Guanghua Yu 已提交
827
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
828 829
    else:
        config.disable_gpu()
830 831
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
832 833 834 835
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
836 837
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
838 839 840 841 842
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
843

G
Guanghua Yu 已提交
844 845 846 847 848
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
849 850
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
W
wangxinxin08 已提交
851
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
852 853 854 855
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
856
            use_calib_mode=trt_calib_mode)
857 858

        if use_dynamic_shape:
859 860 861 862 863 864 865 866 867
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
868 869 870
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
871 872 873 874 875 876 877

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
878 879
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
880
    predictor = create_predictor(config)
881
    return predictor, config
Q
qingqing01 已提交
882 883


G
Guanghua Yu 已提交
884 885 886 887 888
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
J
JYChen 已提交
889
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
915
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
916
    # visualize the predict result
C
cnn 已提交
917 918
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
919
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
920
        im_results = {}
W
wangguanzhong 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
936

C
cnn 已提交
937 938 939 940 941 942 943 944 945
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
946 947 948 949 950 951 952 953 954 955


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
956 957 958 959
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
960
    detector_func = 'Detector'
W
wangguanzhong 已提交
961
    if arch == 'SOLOv2':
962
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
963
    elif arch == 'PicoDet':
964 965
        detector_func = 'DetectorPicoDet'

966 967 968 969 970 971 972 973 974 975 976 977 978 979
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
980

Q
qingqing01 已提交
981
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
982
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
983
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
984 985
    else:
        # predict from image
C
cnn 已提交
986 987
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
988
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
989 990 991 992 993 994 995 996
        if FLAGS.slice_infer:
            detector.predict_image_slice(
                img_list,
                FLAGS.slice_size,
                FLAGS.overlap_ratio,
                FLAGS.combine_method,
                FLAGS.match_threshold,
                FLAGS.match_metric,
997 998
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
999 1000
        else:
            detector.predict_image(
1001 1002 1003 1004 1005
                img_list,
                FLAGS.run_benchmark,
                repeats=100,
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
G
Guanghua Yu 已提交
1006 1007 1008
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
1009
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
1010
            model_dir = FLAGS.model_dir
1011
            model_info = {
1012 1013
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
1014
            }
W
wangguanzhong 已提交
1015
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
1016 1017 1018 1019


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
1020
    parser = argsparser()
Q
qingqing01 已提交
1021 1022
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
1023 1024 1025 1026
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
1027

1028 1029 1030
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
1031

Q
qingqing01 已提交
1032
    main()