resnet.py 21.3 KB
Newer Older
C
cuicheng01 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
C
cuicheng01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
gaotingquan 已提交
15 16
# reference: https://arxiv.org/pdf/1512.03385

C
cuicheng01 已提交
17
from __future__ import absolute_import, division, print_function
C
cuicheng01 已提交
18 19 20 21 22

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
Z
zhiboniu 已提交
23
from paddle.nn import Conv2D, BatchNorm, Linear, BatchNorm2D
C
cuicheng01 已提交
24 25
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
C
cuicheng01 已提交
26
from paddle.regularizer import L2Decay
C
cuicheng01 已提交
27 28
import math

C
cuicheng01 已提交
29
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
D
dongshuilong 已提交
30
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
31 32

MODEL_URLS = {
D
dongshuilong 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    "ResNet18":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams",
    "ResNet18_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams",
    "ResNet34":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams",
    "ResNet34_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams",
    "ResNet50":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams",
    "ResNet50_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams",
    "ResNet101":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams",
    "ResNet101_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams",
    "ResNet152":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams",
    "ResNet152_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams",
    "ResNet200_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams",
C
cuicheng01 已提交
55
}
C
cuicheng01 已提交
56

57 58 59 60 61 62 63 64 65
MODEL_STAGES_PATTERN = {
    "ResNet18": ["blocks[1]", "blocks[3]", "blocks[5]", "blocks[7]"],
    "ResNet34": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
    "ResNet50": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
    "ResNet101": ["blocks[2]", "blocks[6]", "blocks[29]", "blocks[32]"],
    "ResNet152": ["blocks[2]", "blocks[10]", "blocks[46]", "blocks[49]"],
    "ResNet200": ["blocks[2]", "blocks[14]", "blocks[62]", "blocks[65]"]
}

C
cuicheng01 已提交
66 67 68 69 70 71 72 73 74 75
__all__ = MODEL_URLS.keys()
'''
ResNet config: dict.
    key: depth of ResNet.
    values: config's dict of specific model.
        keys:
            block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
            block_depth: The number of blocks in different stages in ResNet.
            num_channels: The number of channels to enter the next stage.
'''
C
cuicheng01 已提交
76 77
NET_CONFIG = {
    "18": {
D
dongshuilong 已提交
78 79 80 81
        "block_type": "BasicBlock",
        "block_depth": [2, 2, 2, 2],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
82
    "34": {
D
dongshuilong 已提交
83 84 85 86
        "block_type": "BasicBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
87
    "50": {
D
dongshuilong 已提交
88 89 90 91
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
92
    "101": {
D
dongshuilong 已提交
93 94 95 96
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 23, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
97
    "152": {
D
dongshuilong 已提交
98 99 100 101
        "block_type": "BottleneckBlock",
        "block_depth": [3, 8, 36, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
102
    "200": {
D
dongshuilong 已提交
103 104 105 106
        "block_type": "BottleneckBlock",
        "block_depth": [3, 12, 48, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
107 108 109 110 111 112 113 114 115 116 117 118
}


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
119 120
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
121
        super().__init__()
C
cuicheng01 已提交
122 123
        self.is_vd_mode = is_vd_mode
        self.act = act
C
cuicheng01 已提交
124
        self.avg_pool = AvgPool2D(
C
cuicheng01 已提交
125
            kernel_size=2, stride=stride, padding="SAME", ceil_mode=True)
C
cuicheng01 已提交
126 127 128 129
        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
C
cuicheng01 已提交
130
            stride=1 if is_vd_mode else stride,
C
cuicheng01 已提交
131 132 133
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
134 135
            bias_attr=False,
            data_format=data_format)
C
cuicheng01 已提交
136

C
cuicheng01 已提交
137 138 139
        self.bn = BatchNorm(
            num_filters,
            param_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
140 141
            bias_attr=ParamAttr(learning_rate=lr_mult),
            data_layout=data_format)
C
cuicheng01 已提交
142 143 144 145
        self.relu = nn.ReLU()

    def forward(self, x):
        if self.is_vd_mode:
C
cuicheng01 已提交
146
            x = self.avg_pool(x)
C
cuicheng01 已提交
147 148 149 150 151 152 153 154
        x = self.conv(x)
        x = self.bn(x)
        if self.act:
            x = self.relu(x)
        return x


class BottleneckBlock(TheseusLayer):
littletomatodonkey's avatar
littletomatodonkey 已提交
155 156 157 158 159 160 161 162
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
163
        super().__init__()
C
cuicheng01 已提交
164 165 166 167
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
C
cuicheng01 已提交
168
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
169 170
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
171 172 173 174 175
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
176
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
177 178
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
179 180 181 182 183
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
184 185
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
186 187 188 189 190 191

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
C
cuicheng01 已提交
192
                stride=stride,
C
cuicheng01 已提交
193
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
194 195
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
196

C
cuicheng01 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        self.relu = nn.ReLU()
        self.shortcut = shortcut

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        x = self.conv2(x)

        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class BasicBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
222 223
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
224 225
        super().__init__()

C
cuicheng01 已提交
226 227 228 229 230 231
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
232
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
233 234
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
235 236 237 238 239
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
240 241
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
242 243 244 245 246
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
C
cuicheng01 已提交
247
                stride=stride,
C
cuicheng01 已提交
248
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
249 250
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        self.shortcut = shortcut
        self.relu = nn.ReLU()

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class ResNet(TheseusLayer):
C
cuicheng01 已提交
268 269 270 271 272 273 274 275 276
    """
    ResNet
    Args:
        config: dict. config of ResNet.
        version: str="vb". Different version of ResNet, version vd can perform better. 
        class_num: int=1000. The number of classes.
        lr_mult_list: list. Control the learning rate of different stages.
    Returns:
        model: nn.Layer. Specific ResNet model depends on args.
C
cuicheng01 已提交
277
    """
D
dongshuilong 已提交
278

C
cuicheng01 已提交
279 280
    def __init__(self,
                 config,
281
                 stages_pattern,
C
cuicheng01 已提交
282
                 version="vb",
H
HydrogenSulfate 已提交
283
                 stem_act="relu",
C
cuicheng01 已提交
284
                 class_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
285
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
C
cuicheng01 已提交
286
                 stride_list=[2, 2, 2, 2, 2],
littletomatodonkey's avatar
littletomatodonkey 已提交
287
                 data_format="NCHW",
W
weishengyu 已提交
288
                 input_image_channel=3,
289
                 return_patterns=None,
C
cuicheng01 已提交
290 291
                 return_stages=None,
                 **kargs):
C
cuicheng01 已提交
292
        super().__init__()
C
cuicheng01 已提交
293 294 295

        self.cfg = config
        self.lr_mult_list = lr_mult_list
C
cuicheng01 已提交
296
        self.stride_list = stride_list
C
cuicheng01 已提交
297
        self.is_vd_mode = version == "vd"
C
cuicheng01 已提交
298 299 300 301 302 303
        self.class_num = class_num
        self.num_filters = [64, 128, 256, 512]
        self.block_depth = self.cfg["block_depth"]
        self.block_type = self.cfg["block_type"]
        self.num_channels = self.cfg["num_channels"]
        self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
D
dongshuilong 已提交
304

C
cuicheng01 已提交
305 306 307 308
        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
D
dongshuilong 已提交
309 310 311
        assert len(self.lr_mult_list
                   ) == 5, "lr_mult_list length should be 5 but got {}".format(
                       len(self.lr_mult_list))
C
cuicheng01 已提交
312

C
cuicheng01 已提交
313 314 315 316 317 318 319 320
        assert isinstance(self.stride_list, (
            list, tuple
        )), "stride_list should be in (list, tuple) but got {}".format(
            type(self.stride_list))
        assert len(self.stride_list
                   ) == 5, "stride_list length should be 5 but got {}".format(
                       len(self.stride_list))

C
cuicheng01 已提交
321
        self.stem_cfg = {
C
cuicheng01 已提交
322
            #num_channels, num_filters, filter_size, stride
C
cuicheng01 已提交
323
            "vb": [[input_image_channel, 64, 7, self.stride_list[0]]],
C
cuicheng01 已提交
324 325
            "vd": [[input_image_channel, 32, 3, self.stride_list[0]],
                   [32, 32, 3, 1], [32, 64, 3, 1]]
D
dongshuilong 已提交
326 327
        }

C
cuicheng01 已提交
328
        self.stem = nn.Sequential(*[
C
cuicheng01 已提交
329
            ConvBNLayer(
D
dongshuilong 已提交
330 331 332 333
                num_channels=in_c,
                num_filters=out_c,
                filter_size=k,
                stride=s,
W
dbg  
weishengyu 已提交
334
                act=stem_act,
littletomatodonkey's avatar
littletomatodonkey 已提交
335 336
                lr_mult=self.lr_mult_list[0],
                data_format=data_format)
C
cuicheng01 已提交
337 338
            for in_c, out_c, k, s in self.stem_cfg[version]
        ])
D
dongshuilong 已提交
339

littletomatodonkey's avatar
littletomatodonkey 已提交
340
        self.max_pool = MaxPool2D(
C
cuicheng01 已提交
341 342 343 344
            kernel_size=3,
            stride=stride_list[1],
            padding=1,
            data_format=data_format)
C
cuicheng01 已提交
345 346
        block_list = []
        for block_idx in range(len(self.block_depth)):
C
cuicheng01 已提交
347
            shortcut = False
C
cuicheng01 已提交
348
            for i in range(self.block_depth[block_idx]):
D
dongshuilong 已提交
349 350 351
                block_list.append(globals()[self.block_type](
                    num_channels=self.num_channels[block_idx] if i == 0 else
                    self.num_filters[block_idx] * self.channels_mult,
C
cuicheng01 已提交
352
                    num_filters=self.num_filters[block_idx],
C
cuicheng01 已提交
353 354
                    stride=self.stride_list[block_idx + 1]
                    if i == 0 and block_idx != 0 else 1,
C
cuicheng01 已提交
355
                    shortcut=shortcut,
C
cuicheng01 已提交
356
                    if_first=block_idx == i == 0 if version == "vd" else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
357 358
                    lr_mult=self.lr_mult_list[block_idx + 1],
                    data_format=data_format))
D
dongshuilong 已提交
359
                shortcut = True
C
cuicheng01 已提交
360
        self.blocks = nn.Sequential(*block_list)
C
cuicheng01 已提交
361

littletomatodonkey's avatar
littletomatodonkey 已提交
362
        self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format)
363
        self.flatten = nn.Flatten()
W
dbg  
weishengyu 已提交
364
        self.avg_pool_channels = self.num_channels[-1] * 2
C
cuicheng01 已提交
365
        stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0)
C
cuicheng01 已提交
366
        self.fc = Linear(
C
cuicheng01 已提交
367
            self.avg_pool_channels,
C
cuicheng01 已提交
368
            self.class_num,
D
dongshuilong 已提交
369
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
C
cuicheng01 已提交
370

littletomatodonkey's avatar
littletomatodonkey 已提交
371
        self.data_format = data_format
372 373 374 375 376

        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
littletomatodonkey's avatar
littletomatodonkey 已提交
377

C
cuicheng01 已提交
378
    def forward(self, x):
littletomatodonkey's avatar
littletomatodonkey 已提交
379 380 381 382 383 384 385 386 387 388
        with paddle.static.amp.fp16_guard():
            if self.data_format == "NHWC":
                x = paddle.transpose(x, [0, 2, 3, 1])
                x.stop_gradient = True
            x = self.stem(x)
            x = self.max_pool(x)
            x = self.blocks(x)
            x = self.avg_pool(x)
            x = self.flatten(x)
            x = self.fc(x)
C
cuicheng01 已提交
389 390 391
        return x


D
dongshuilong 已提交
392 393 394 395 396 397
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
H
HydrogenSulfate 已提交
398 399 400 401
        if 'http' in pretrained:
            load_dygraph_pretrain_from_url(model, pretrained, use_ssld=False)
        else:
            load_dygraph_pretrain(model, pretrained)
D
dongshuilong 已提交
402 403 404 405 406 407 408
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def ResNet18(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
409 410 411
    """
    ResNet18
    Args:
D
dongshuilong 已提交
412 413 414
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
415 416 417
    Returns:
        model: nn.Layer. Specific `ResNet18` model depends on args.
    """
418 419 420 421 422
    model = ResNet(
        config=NET_CONFIG["18"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
423
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld)
C
cuicheng01 已提交
424 425
    return model

C
cuicheng01 已提交
426

D
dongshuilong 已提交
427
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
428 429 430
    """
    ResNet18_vd
    Args:
D
dongshuilong 已提交
431 432 433
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
434 435 436
    Returns:
        model: nn.Layer. Specific `ResNet18_vd` model depends on args.
    """
437 438 439 440 441
    model = ResNet(
        config=NET_CONFIG["18"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
442
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld)
C
cuicheng01 已提交
443 444
    return model

C
cuicheng01 已提交
445

D
dongshuilong 已提交
446
def ResNet34(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
447 448 449
    """
    ResNet34
    Args:
D
dongshuilong 已提交
450 451 452
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
453
    Returns:
C
cuicheng01 已提交
454
        model: nn.Layer. Specific `ResNet34` model depends on args.
C
cuicheng01 已提交
455
    """
456 457 458 459 460
    model = ResNet(
        config=NET_CONFIG["34"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
461
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld)
C
cuicheng01 已提交
462 463 464
    return model


D
dongshuilong 已提交
465
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
466 467 468
    """
    ResNet34_vd
    Args:
D
dongshuilong 已提交
469 470 471
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
472
    Returns:
C
cuicheng01 已提交
473
        model: nn.Layer. Specific `ResNet34_vd` model depends on args.
C
cuicheng01 已提交
474
    """
475 476 477 478 479
    model = ResNet(
        config=NET_CONFIG["34"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
480
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld)
C
cuicheng01 已提交
481 482 483
    return model


D
dongshuilong 已提交
484
def ResNet50(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
485 486 487
    """
    ResNet50
    Args:
D
dongshuilong 已提交
488 489 490
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
491 492 493
    Returns:
        model: nn.Layer. Specific `ResNet50` model depends on args.
    """
494 495 496 497 498
    model = ResNet(
        config=NET_CONFIG["50"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
499
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
C
cuicheng01 已提交
500 501
    return model

C
cuicheng01 已提交
502

D
dongshuilong 已提交
503
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
504 505 506
    """
    ResNet50_vd
    Args:
D
dongshuilong 已提交
507 508 509
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
510 511 512
    Returns:
        model: nn.Layer. Specific `ResNet50_vd` model depends on args.
    """
513 514 515 516 517
    model = ResNet(
        config=NET_CONFIG["50"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
518
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld)
C
cuicheng01 已提交
519 520
    return model

C
cuicheng01 已提交
521

D
dongshuilong 已提交
522
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
523 524 525
    """
    ResNet101
    Args:
D
dongshuilong 已提交
526 527 528
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
529 530 531
    Returns:
        model: nn.Layer. Specific `ResNet101` model depends on args.
    """
532 533 534 535 536
    model = ResNet(
        config=NET_CONFIG["101"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
537
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
C
cuicheng01 已提交
538 539
    return model

C
cuicheng01 已提交
540

D
dongshuilong 已提交
541
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
542 543 544
    """
    ResNet101_vd
    Args:
D
dongshuilong 已提交
545 546 547
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
548 549 550
    Returns:
        model: nn.Layer. Specific `ResNet101_vd` model depends on args.
    """
551 552 553 554 555
    model = ResNet(
        config=NET_CONFIG["101"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
556
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld)
C
cuicheng01 已提交
557 558
    return model

C
cuicheng01 已提交
559

D
dongshuilong 已提交
560
def ResNet152(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
561 562 563
    """
    ResNet152
    Args:
D
dongshuilong 已提交
564 565 566
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
567 568 569
    Returns:
        model: nn.Layer. Specific `ResNet152` model depends on args.
    """
570 571 572 573 574
    model = ResNet(
        config=NET_CONFIG["152"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
575
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld)
C
cuicheng01 已提交
576 577
    return model

C
cuicheng01 已提交
578

D
dongshuilong 已提交
579
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
580 581 582
    """
    ResNet152_vd
    Args:
D
dongshuilong 已提交
583 584 585
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
586 587 588
    Returns:
        model: nn.Layer. Specific `ResNet152_vd` model depends on args.
    """
589 590 591 592 593
    model = ResNet(
        config=NET_CONFIG["152"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
594
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld)
C
cuicheng01 已提交
595 596 597
    return model


D
dongshuilong 已提交
598
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
599 600 601
    """
    ResNet200_vd
    Args:
D
dongshuilong 已提交
602 603 604
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
605 606 607
    Returns:
        model: nn.Layer. Specific `ResNet200_vd` model depends on args.
    """
608 609 610 611 612
    model = ResNet(
        config=NET_CONFIG["200"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet200"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
613
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld)
C
cuicheng01 已提交
614
    return model