Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
465a8e5f
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
接近 2 年 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
465a8e5f
编写于
5月 25, 2021
作者:
C
cuicheng01
提交者:
GitHub
5月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Create resnet.py
上级
ff9dd192
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
332 addition
and
0 deletion
+332
-0
ppcls/arch/backbone/legendary_models/resnet.py
ppcls/arch/backbone/legendary_models/resnet.py
+332
-0
未找到文件。
ppcls/arch/backbone/legendary_models/resnet.py
0 → 100644
浏览文件 @
465a8e5f
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
,
AvgPool2D
from
paddle.nn.initializer
import
Uniform
import
math
from
ppcls.arch.backbone.base.theseus_layer
import
TheseusLayer
NET_CONFIG
=
{
"18"
:
{
"block_type"
:
"BasicBlock"
,
"block_depth"
:
[
2
,
2
,
2
,
2
],
"num_channels"
:
[
64
,
64
,
128
,
256
]},
"34"
:
{
"block_type"
:
"BasicBlock"
,
"block_depth"
:
[
3
,
4
,
6
,
3
],
"num_channels"
:
[
64
,
64
,
128
,
256
]},
"50"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
4
,
6
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]},
"101"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
4
,
23
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]},
"152"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
8
,
36
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]},
"200"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
12
,
48
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]},
}
class
ConvBNLayer
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
is_vd_mode
=
False
,
act
=
None
,
lr_mult
=
1.0
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
act
=
act
self
.
avgpool
=
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
False
)
self
.
bn
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
ParamAttr
(
learning_rate
=
lr_mult
))
self
.
relu
=
nn
.
ReLU
()
def
forward
(
self
,
x
):
if
self
.
is_vd_mode
:
x
=
self
.
avgpool
(
x
)
x
=
self
.
conv
(
x
)
x
=
self
.
bn
(
x
)
if
self
.
act
:
x
=
self
.
relu
(
x
)
return
x
class
BottleneckBlock
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
if_first
=
False
,
lr_mult
=
1.0
,
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
lr_mult
=
lr_mult
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
lr_mult
=
lr_mult
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
lr_mult
=
lr_mult
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
if
if_first
else
1
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
)
self
.
relu
=
nn
.
ReLU
()
self
.
shortcut
=
shortcut
def
forward
(
self
,
x
):
identity
=
x
x
=
self
.
conv0
(
x
)
x
=
self
.
conv1
(
x
)
x
=
self
.
conv2
(
x
)
if
self
.
shortcut
:
short
=
identity
else
:
short
=
self
.
short
(
identity
)
x
=
paddle
.
add
(
x
=
x
,
y
=
short
)
x
=
self
.
relu
(
x
)
return
x
class
BasicBlock
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
if_first
=
False
,
lr_mult
=
1.0
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
stride
=
stride
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
lr_mult
=
lr_mult
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
,
lr_mult
=
lr_mult
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
stride
if
if_first
else
1
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
)
self
.
shortcut
=
shortcut
self
.
relu
=
nn
.
ReLU
()
def
forward
(
self
,
x
):
identity
=
x
x
=
self
.
conv0
(
x
)
x
=
self
.
conv1
(
x
)
if
self
.
shortcut
:
short
=
identity
else
:
short
=
self
.
short
(
identity
)
x
=
paddle
.
add
(
x
=
x
,
y
=
short
)
x
=
self
.
relu
(
x
)
return
x
class
ResNet
(
TheseusLayer
):
"""ResNet model from
`"Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385>`_ paper.
Parameters
----------
config : dict of string and list
Information of whole model.
version : str, "vb" and "vd"
Different version of ResNet, version vd can perform better.
class_dim : int, default 1000
Number of classification classes.
lr_mult_list : list of float
Control the learning rate of different stages
"""
def
__init__
(
self
,
config
,
version
=
"vd"
,
class_dim
=
1000
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
]):
super
(
ResNet
,
self
).
__init__
()
self
.
cfg
=
config
self
.
lr_mult_list
=
lr_mult_list
self
.
is_vd_mode
=
version
==
"vd"
assert
isinstance
(
self
.
lr_mult_list
,
(
list
,
tuple
)),
"lr_mult_list should be in (list, tuple) but got {}"
.
format
(
type
(
self
.
lr_mult_list
))
assert
len
(
self
.
lr_mult_list
)
==
5
,
"lr_mult_list length should be 5 but got {}"
.
format
(
len
(
self
.
lr_mult_list
))
self
.
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
channels_mult
=
1
if
self
.
cfg
[
"num_channels"
][
-
1
]
==
256
else
4
self
.
stem_cfg
=
{
"vb"
:
[[
3
,
64
,
7
,
2
]],
"vd"
:
[[
3
,
32
,
3
,
2
],
[
32
,
32
,
3
,
1
],
[
32
,
64
,
3
,
1
]]}
self
.
stem
=
nn
.
Sequential
(
*
[
ConvBNLayer
(
num_channels
=
in_c
,
num_filters
=
out_c
,
filter_size
=
k
,
stride
=
s
,
act
=
'relu'
,
lr_mult
=
self
.
lr_mult_list
[
0
])
for
in_c
,
out_c
,
k
,
s
in
self
.
stem_cfg
[
version
]
])
self
.
maxpool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
self
.
cfg
[
"block_depth"
])):
shortcut
=
False
for
i
in
range
(
self
.
cfg
[
"block_depth"
][
block
]):
self
.
block_list
.
append
(
globals
()[
self
.
cfg
[
"block_type"
]](
num_channels
=
self
.
cfg
[
"num_channels"
][
block
]
if
i
==
0
else
self
.
num_filters
[
block
]
*
self
.
channels_mult
,
num_filters
=
self
.
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
if
version
==
"vd"
else
True
,
lr_mult
=
self
.
lr_mult_list
[
block
+
1
]))
shortcut
=
True
self
.
blocks
=
nn
.
Sequential
(
*
self
.
block_list
)
self
.
avgpool
=
AdaptiveAvgPool2D
(
1
)
self
.
avgpool_channels
=
self
.
cfg
[
"num_channels"
][
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
avgpool_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
avgpool_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
x
):
x
=
self
.
stem
(
x
)
x
=
self
.
maxpool
(
x
)
x
=
self
.
blocks
(
x
)
x
=
self
.
avgpool
(
x
)
x
=
paddle
.
reshape
(
x
,
shape
=
[
-
1
,
self
.
avgpool_channels
])
x
=
self
.
out
(
x
)
return
x
def
ResNet18
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"18"
],
version
=
"vb"
,
**
args
)
return
model
def
ResNet18_vd
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"18"
],
version
=
"vd"
,
**
args
)
return
model
def
ResNet50
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"50"
],
version
=
"vb"
,
**
args
)
return
model
def
ResNet50_vd
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"50"
],
version
=
"vd"
,
**
args
)
return
model
def
ResNet101
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"101"
],
version
=
"vb"
,
**
args
)
return
model
def
ResNet101_vd
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"101"
],
version
=
"vd"
,
**
args
)
return
model
def
ResNet152
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"152"
],
version
=
"vb"
,
**
args
)
return
model
def
ResNet152_vd
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"152"
],
version
=
"vd"
,
**
args
)
return
model
def
ResNet200
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"200"
],
version
=
"vb"
,
**
args
)
return
model
def
ResNet200_vd
(
**
args
):
model
=
ResNet
(
config
=
NET_CONFIG
[
"200"
],
version
=
"vd"
,
**
args
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录