resnet.py 18.9 KB
Newer Older
C
cuicheng01 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
C
cuicheng01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
cuicheng01 已提交
15
from __future__ import absolute_import, division, print_function
C
cuicheng01 已提交
16 17 18 19 20 21 22 23 24 25

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math

C
cuicheng01 已提交
26
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
D
dongshuilong 已提交
27
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
28 29

MODEL_URLS = {
D
dongshuilong 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    "ResNet18":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams",
    "ResNet18_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams",
    "ResNet34":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams",
    "ResNet34_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams",
    "ResNet50":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams",
    "ResNet50_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams",
    "ResNet101":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams",
    "ResNet101_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams",
    "ResNet152":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams",
    "ResNet152_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams",
    "ResNet200_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams",
C
cuicheng01 已提交
52
}
C
cuicheng01 已提交
53

C
cuicheng01 已提交
54 55 56 57 58 59 60 61 62 63
__all__ = MODEL_URLS.keys()
'''
ResNet config: dict.
    key: depth of ResNet.
    values: config's dict of specific model.
        keys:
            block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
            block_depth: The number of blocks in different stages in ResNet.
            num_channels: The number of channels to enter the next stage.
'''
C
cuicheng01 已提交
64 65
NET_CONFIG = {
    "18": {
D
dongshuilong 已提交
66 67 68 69
        "block_type": "BasicBlock",
        "block_depth": [2, 2, 2, 2],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
70
    "34": {
D
dongshuilong 已提交
71 72 73 74
        "block_type": "BasicBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
75
    "50": {
D
dongshuilong 已提交
76 77 78 79
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
80
    "101": {
D
dongshuilong 已提交
81 82 83 84
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 23, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
85
    "152": {
D
dongshuilong 已提交
86 87 88 89
        "block_type": "BottleneckBlock",
        "block_depth": [3, 8, 36, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
90
    "200": {
D
dongshuilong 已提交
91 92 93 94
        "block_type": "BottleneckBlock",
        "block_depth": [3, 12, 48, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
95 96 97 98 99 100 101 102 103 104 105 106
}


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
107 108
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
109
        super().__init__()
C
cuicheng01 已提交
110 111
        self.is_vd_mode = is_vd_mode
        self.act = act
C
cuicheng01 已提交
112
        self.avg_pool = AvgPool2D(
C
cuicheng01 已提交
113 114 115 116 117 118 119 120 121
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
122 123
            bias_attr=False,
            data_format=data_format)
C
cuicheng01 已提交
124 125 126
        self.bn = BatchNorm(
            num_filters,
            param_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
127 128
            bias_attr=ParamAttr(learning_rate=lr_mult),
            data_layout=data_format)
C
cuicheng01 已提交
129 130 131 132
        self.relu = nn.ReLU()

    def forward(self, x):
        if self.is_vd_mode:
C
cuicheng01 已提交
133
            x = self.avg_pool(x)
C
cuicheng01 已提交
134 135 136 137 138 139 140 141
        x = self.conv(x)
        x = self.bn(x)
        if self.act:
            x = self.relu(x)
        return x


class BottleneckBlock(TheseusLayer):
littletomatodonkey's avatar
littletomatodonkey 已提交
142 143 144 145 146 147 148 149
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
150
        super().__init__()
C
cuicheng01 已提交
151 152 153 154 155

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
C
cuicheng01 已提交
156
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
157 158
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
159 160 161 162 163
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
164
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
165 166
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
167 168 169 170 171
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
172 173
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
174 175 176 177 178 179 180 181

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride if if_first else 1,
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
182 183
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        self.relu = nn.ReLU()
        self.shortcut = shortcut

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        x = self.conv2(x)

        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class BasicBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
209 210
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
211 212
        super().__init__()

C
cuicheng01 已提交
213 214 215 216 217 218
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
219
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
220 221
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
222 223 224 225 226
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
227 228
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
229 230 231 232 233 234 235
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride if if_first else 1,
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
236 237
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        self.shortcut = shortcut
        self.relu = nn.ReLU()

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class ResNet(TheseusLayer):
C
cuicheng01 已提交
255 256 257 258 259 260 261 262 263
    """
    ResNet
    Args:
        config: dict. config of ResNet.
        version: str="vb". Different version of ResNet, version vd can perform better. 
        class_num: int=1000. The number of classes.
        lr_mult_list: list. Control the learning rate of different stages.
    Returns:
        model: nn.Layer. Specific ResNet model depends on args.
C
cuicheng01 已提交
264
    """
D
dongshuilong 已提交
265

C
cuicheng01 已提交
266 267
    def __init__(self,
                 config,
C
cuicheng01 已提交
268 269
                 version="vb",
                 class_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
270 271 272
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
                 data_format="NCHW",
                 input_image_channel=3):
C
cuicheng01 已提交
273
        super().__init__()
C
cuicheng01 已提交
274 275 276 277

        self.cfg = config
        self.lr_mult_list = lr_mult_list
        self.is_vd_mode = version == "vd"
C
cuicheng01 已提交
278 279 280 281 282 283
        self.class_num = class_num
        self.num_filters = [64, 128, 256, 512]
        self.block_depth = self.cfg["block_depth"]
        self.block_type = self.cfg["block_type"]
        self.num_channels = self.cfg["num_channels"]
        self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
D
dongshuilong 已提交
284

C
cuicheng01 已提交
285 286 287 288
        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
D
dongshuilong 已提交
289 290 291
        assert len(self.lr_mult_list
                   ) == 5, "lr_mult_list length should be 5 but got {}".format(
                       len(self.lr_mult_list))
C
cuicheng01 已提交
292 293

        self.stem_cfg = {
C
cuicheng01 已提交
294
            #num_channels, num_filters, filter_size, stride
littletomatodonkey's avatar
littletomatodonkey 已提交
295 296 297
            "vb": [[input_image_channel, 64, 7, 2]],
            "vd":
            [[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
D
dongshuilong 已提交
298 299
        }

littletomatodonkey's avatar
littletomatodonkey 已提交
300
        self.stem = nn.Sequential(* [
C
cuicheng01 已提交
301
            ConvBNLayer(
D
dongshuilong 已提交
302 303 304 305 306
                num_channels=in_c,
                num_filters=out_c,
                filter_size=k,
                stride=s,
                act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
307 308
                lr_mult=self.lr_mult_list[0],
                data_format=data_format)
C
cuicheng01 已提交
309 310
            for in_c, out_c, k, s in self.stem_cfg[version]
        ])
D
dongshuilong 已提交
311

littletomatodonkey's avatar
littletomatodonkey 已提交
312 313
        self.max_pool = MaxPool2D(
            kernel_size=3, stride=2, padding=1, data_format=data_format)
C
cuicheng01 已提交
314 315
        block_list = []
        for block_idx in range(len(self.block_depth)):
C
cuicheng01 已提交
316
            shortcut = False
C
cuicheng01 已提交
317
            for i in range(self.block_depth[block_idx]):
D
dongshuilong 已提交
318 319 320
                block_list.append(globals()[self.block_type](
                    num_channels=self.num_channels[block_idx] if i == 0 else
                    self.num_filters[block_idx] * self.channels_mult,
C
cuicheng01 已提交
321 322
                    num_filters=self.num_filters[block_idx],
                    stride=2 if i == 0 and block_idx != 0 else 1,
C
cuicheng01 已提交
323
                    shortcut=shortcut,
C
cuicheng01 已提交
324
                    if_first=block_idx == i == 0 if version == "vd" else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
325 326
                    lr_mult=self.lr_mult_list[block_idx + 1],
                    data_format=data_format))
D
dongshuilong 已提交
327
                shortcut = True
C
cuicheng01 已提交
328
        self.blocks = nn.Sequential(*block_list)
C
cuicheng01 已提交
329

littletomatodonkey's avatar
littletomatodonkey 已提交
330
        self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format)
331
        self.flatten = nn.Flatten()
W
dbg  
weishengyu 已提交
332
        self.avg_pool_channels = self.num_channels[-1] * 2
C
cuicheng01 已提交
333
        stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0)
C
cuicheng01 已提交
334
        self.fc = Linear(
C
cuicheng01 已提交
335
            self.avg_pool_channels,
C
cuicheng01 已提交
336
            self.class_num,
D
dongshuilong 已提交
337
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
C
cuicheng01 已提交
338

littletomatodonkey's avatar
littletomatodonkey 已提交
339 340
        self.data_format = data_format

C
cuicheng01 已提交
341
    def forward(self, x):
littletomatodonkey's avatar
littletomatodonkey 已提交
342 343 344 345 346 347 348 349 350 351
        with paddle.static.amp.fp16_guard():
            if self.data_format == "NHWC":
                x = paddle.transpose(x, [0, 2, 3, 1])
                x.stop_gradient = True
            x = self.stem(x)
            x = self.max_pool(x)
            x = self.blocks(x)
            x = self.avg_pool(x)
            x = self.flatten(x)
            x = self.fc(x)
C
cuicheng01 已提交
352 353 354
        return x


D
dongshuilong 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def ResNet18(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
369 370 371
    """
    ResNet18
    Args:
D
dongshuilong 已提交
372 373 374
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
375 376 377
    Returns:
        model: nn.Layer. Specific `ResNet18` model depends on args.
    """
D
dongshuilong 已提交
378 379
    model = ResNet(config=NET_CONFIG["18"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld)
C
cuicheng01 已提交
380 381
    return model

C
cuicheng01 已提交
382

D
dongshuilong 已提交
383
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
384 385 386
    """
    ResNet18_vd
    Args:
D
dongshuilong 已提交
387 388 389
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
390 391 392
    Returns:
        model: nn.Layer. Specific `ResNet18_vd` model depends on args.
    """
D
dongshuilong 已提交
393 394
    model = ResNet(config=NET_CONFIG["18"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld)
C
cuicheng01 已提交
395 396
    return model

C
cuicheng01 已提交
397

D
dongshuilong 已提交
398
def ResNet34(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
399 400 401
    """
    ResNet34
    Args:
D
dongshuilong 已提交
402 403 404
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
405
    Returns:
C
cuicheng01 已提交
406
        model: nn.Layer. Specific `ResNet34` model depends on args.
C
cuicheng01 已提交
407
    """
D
dongshuilong 已提交
408 409
    model = ResNet(config=NET_CONFIG["34"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld)
C
cuicheng01 已提交
410 411 412
    return model


D
dongshuilong 已提交
413
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
414 415 416
    """
    ResNet34_vd
    Args:
D
dongshuilong 已提交
417 418 419
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
420
    Returns:
C
cuicheng01 已提交
421
        model: nn.Layer. Specific `ResNet34_vd` model depends on args.
C
cuicheng01 已提交
422
    """
D
dongshuilong 已提交
423 424
    model = ResNet(config=NET_CONFIG["34"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld)
C
cuicheng01 已提交
425 426 427
    return model


D
dongshuilong 已提交
428
def ResNet50(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
429 430 431
    """
    ResNet50
    Args:
D
dongshuilong 已提交
432 433 434
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
435 436 437
    Returns:
        model: nn.Layer. Specific `ResNet50` model depends on args.
    """
D
dongshuilong 已提交
438 439
    model = ResNet(config=NET_CONFIG["50"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
C
cuicheng01 已提交
440 441
    return model

C
cuicheng01 已提交
442

D
dongshuilong 已提交
443
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
444 445 446
    """
    ResNet50_vd
    Args:
D
dongshuilong 已提交
447 448 449
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
450 451 452
    Returns:
        model: nn.Layer. Specific `ResNet50_vd` model depends on args.
    """
D
dongshuilong 已提交
453 454
    model = ResNet(config=NET_CONFIG["50"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld)
C
cuicheng01 已提交
455 456
    return model

C
cuicheng01 已提交
457

D
dongshuilong 已提交
458
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
459 460 461
    """
    ResNet101
    Args:
D
dongshuilong 已提交
462 463 464
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
465 466 467
    Returns:
        model: nn.Layer. Specific `ResNet101` model depends on args.
    """
D
dongshuilong 已提交
468 469
    model = ResNet(config=NET_CONFIG["101"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
C
cuicheng01 已提交
470 471
    return model

C
cuicheng01 已提交
472

D
dongshuilong 已提交
473
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
474 475 476
    """
    ResNet101_vd
    Args:
D
dongshuilong 已提交
477 478 479
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
480 481 482
    Returns:
        model: nn.Layer. Specific `ResNet101_vd` model depends on args.
    """
D
dongshuilong 已提交
483 484
    model = ResNet(config=NET_CONFIG["101"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld)
C
cuicheng01 已提交
485 486
    return model

C
cuicheng01 已提交
487

D
dongshuilong 已提交
488
def ResNet152(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
489 490 491
    """
    ResNet152
    Args:
D
dongshuilong 已提交
492 493 494
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
495 496 497
    Returns:
        model: nn.Layer. Specific `ResNet152` model depends on args.
    """
D
dongshuilong 已提交
498 499
    model = ResNet(config=NET_CONFIG["152"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld)
C
cuicheng01 已提交
500 501
    return model

C
cuicheng01 已提交
502

D
dongshuilong 已提交
503
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
504 505 506
    """
    ResNet152_vd
    Args:
D
dongshuilong 已提交
507 508 509
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
510 511 512
    Returns:
        model: nn.Layer. Specific `ResNet152_vd` model depends on args.
    """
D
dongshuilong 已提交
513 514
    model = ResNet(config=NET_CONFIG["152"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld)
C
cuicheng01 已提交
515 516 517
    return model


D
dongshuilong 已提交
518
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
519 520 521
    """
    ResNet200_vd
    Args:
D
dongshuilong 已提交
522 523 524
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
525 526 527
    Returns:
        model: nn.Layer. Specific `ResNet200_vd` model depends on args.
    """
D
dongshuilong 已提交
528 529
    model = ResNet(config=NET_CONFIG["200"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld)
C
cuicheng01 已提交
530
    return model