提交 aa8f4c16 编写于 作者: Z zhiboniu

attr ma test ok

上级 0a3ecf60
......@@ -20,9 +20,10 @@ import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import Conv2D, BatchNorm, Linear, BatchNorm2D
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
from paddle.regularizer import L2Decay
import math
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
......@@ -113,6 +114,7 @@ class ConvBNLayer(TheseusLayer):
filter_size,
stride=1,
groups=1,
norm_decay=0.0005,
is_vd_mode=False,
act=None,
lr_mult=1.0,
......@@ -132,11 +134,18 @@ class ConvBNLayer(TheseusLayer):
weight_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=False,
data_format=data_format)
self.bn = BatchNorm(
num_filters,
param_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=ParamAttr(learning_rate=lr_mult),
data_layout=data_format)
param_attr = ParamAttr(
learning_rate=lr_mult,
regularizer=L2Decay(norm_decay),
trainable=True)
bias_attr = ParamAttr(
learning_rate=lr_mult,
regularizer=L2Decay(norm_decay),
trainable=True)
self.bn = BatchNorm2D(
num_filters, weight_attr=param_attr, bias_attr=bias_attr)
self.relu = nn.ReLU()
def forward(self, x):
......@@ -192,6 +201,7 @@ class BottleneckBlock(TheseusLayer):
is_vd_mode=False if if_first else True,
lr_mult=lr_mult,
data_format=data_format)
self.relu = nn.ReLU()
self.shortcut = shortcut
......@@ -312,7 +322,7 @@ class ResNet(TheseusLayer):
[[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
}
self.stem = nn.Sequential(*[
self.stem = nn.Sequential(* [
ConvBNLayer(
num_channels=in_c,
num_filters=out_c,
......
......@@ -55,7 +55,7 @@ class StrongBaselinePAR(nn.Layer):
def forward(self, x):
fc_feat = self.backbone(x)
output = F.sigmoid(fc_feat)
return output
return fc_feat
def _load_pretrained(pretrained, model, model_url, use_ssld):
......@@ -95,4 +95,5 @@ def load_pretrained(model, local_weight_path):
def StrongBaselineAttr(pretrained=True, use_ssld=False, **kwargs):
model = StrongBaselinePAR(**kwargs)
_load_pretrained(MODEL_URLS["StrongBaselineAttr"], model, None, None)
# load_pretrained(model, MODEL_URLS["StrongBaselineAttr"])
return model
......@@ -55,12 +55,14 @@ DataLoader:
- DecodeImage:
to_rgb: True
channel_first: False
# - ResizeImage:
# size: [192, 256]
- RandCropImage:
- ResizeImage:
size: [192, 256]
- Pad:
size: [212, 276]
pad_mode: 1
fill_value: 0
- RandomCropImage:
size: [192, 256]
scale: [0.9, 1.1]
ratio: [0.75, 0.75]
- RandFlipImage:
flip_code: 1
- NormalizeImage:
......
......@@ -10,3 +10,4 @@ from ppcls.data.dataloader.mix_sampler import MixSampler
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
from ppcls.data.dataloader.pk_sampler import PKSampler
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17
from ppcls.data.dataloader.attr_dataset import AttrDataset
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import os
import pickle
from .common_dataset import CommonDataset
from ppcls.data.preprocess import transform
class AttrDataset(CommonDataset):
def _load_anno(self, seed=None, split='trainval'):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
anno_path = self._cls_path
image_dir = self._img_root
self.images = []
self.labels = []
dataset_info = pickle.load(open(anno_path, 'rb+'))
img_id = dataset_info.image_name
attr_label = dataset_info.label
attr_label[attr_label == 2] = 0
attr_id = dataset_info.attr_name
if 'label_idx' in dataset_info.keys():
eval_attr_idx = dataset_info.label_idx.eval
attr_label = attr_label[:, eval_attr_idx]
attr_id = [attr_id[i] for i in eval_attr_idx]
attr_num = len(attr_id)
# mapping category name to class id
# first_class:0, second_class:1, ...
cname2cid = {attr_id[i]: i for i in range(attr_num)}
assert split in dataset_info.partition.keys(
), f'split {split} is not exist'
img_idx = dataset_info.partition[split]
if isinstance(img_idx, list):
img_idx = img_idx[0] # default partition 0
img_num = img_idx.shape[0]
img_id = [img_id[i] for i in img_idx]
label = attr_label[img_idx] # [:, [0, 12]]
self.label_ratio = label.mean(0)
print("label_ratio:", self.label_ratio)
for i, (img_i, label_i) in enumerate(zip(img_id, label)):
imgname = os.path.join(image_dir, img_i)
self.images.append(imgname)
self.labels.append(np.int64(label_i))
def __getitem__(self, idx):
try:
with open(self.images[idx], 'rb') as f:
img = f.read()
if self._transform_ops:
img = transform(img, self._transform_ops)
img = img.transpose((2, 0, 1))
return (img, [self.labels[idx], self.label_ratio])
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
format(self.images[idx], ex))
rnd_idx = np.random.randint(self.__len__())
return self.__getitem__(rnd_idx)
......@@ -44,11 +44,11 @@ def create_operators(params):
class CommonDataset(Dataset):
def __init__(
self,
image_root,
cls_label_path,
transform_ops=None, ):
def __init__(self,
image_root,
cls_label_path,
transform_ops=None,
split='trainval'):
self._img_root = image_root
self._cls_path = cls_label_path
if transform_ops:
......@@ -56,7 +56,7 @@ class CommonDataset(Dataset):
self.images = []
self.labels = []
self._load_anno()
self._load_anno(split=split)
def _load_anno(self):
pass
......
......@@ -33,6 +33,7 @@ from ppcls.data.preprocess.ops.operators import AugMix
from ppcls.data.preprocess.ops.operators import Pad
from ppcls.data.preprocess.ops.operators import ToTensor
from ppcls.data.preprocess.ops.operators import Normalize
from ppcls.data.preprocess.ops.operators import RandomCropImage
from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator
......
......@@ -190,6 +190,105 @@ class CropImage(object):
return img[h_start:h_end, w_start:w_end, :]
class Pad(object):
def __init__(self,
size=None,
size_divisor=32,
pad_mode=0,
offsets=None,
fill_value=(127.5, 127.5, 127.5)):
"""
Pad image to a specified size or multiple of size_divisor.
Args:
size (int, list): image target size, if None, pad to multiple of size_divisor, default None
size_divisor (int): size divisor, default 32
pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
"""
if not isinstance(size, (int, list)):
raise TypeError(
"Type of target_size is invalid when random_size is True. \
Must be List, now is {}".format(type(size)))
if isinstance(size, int):
size = [size, size]
assert pad_mode in [
-1, 0, 1, 2
], 'currently only supports four modes [-1, 0, 1, 2]'
if pad_mode == -1:
assert offsets, 'if pad_mode is -1, offsets should not be None'
self.size = size
self.size_divisor = size_divisor
self.pad_mode = pad_mode
self.fill_value = fill_value
self.offsets = offsets
def apply_image(self, image, offsets, im_size, size):
x, y = offsets
im_h, im_w = im_size
h, w = size
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
return canvas
def __call__(self, img):
im_h, im_w = img.shape[:2]
if self.size:
w, h = self.size
assert (
im_h <= h and im_w <= w
), '(h, w) of target size should be greater than (im_h, im_w)'
else:
h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)
if h == im_h and w == im_w:
return img.astype(np.float32)
if self.pad_mode == -1:
offset_x, offset_y = self.offsets
elif self.pad_mode == 0:
offset_y, offset_x = 0, 0
elif self.pad_mode == 1:
offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
else:
offset_y, offset_x = h - im_h, w - im_w
offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]
return self.apply_image(img, offsets, im_size, size)
class RandomCropImage(object):
"""Random crop image only
"""
def __init__(self, size):
super(RandomCropImage, self).__init__()
if isinstance(size, int):
size = [size, size]
self.size = size
def __call__(self, img):
h, w = img.shape[:2]
tw, th = self.size
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
img = img[i:i + th, j:j + tw, :]
if img.shape[0] != 256 or img.shape[1] != 192:
raise ValueError('sample: ', h, w, i, j, th, tw, img.shape)
return img
class RandCropImage(object):
""" random crop image """
......@@ -463,8 +562,8 @@ class Pad(object):
# Process fill color for affine transforms
major_found, minor_found = (int(v)
for v in PILLOW_VERSION.split('.')[:2])
major_required, minor_required = (
int(v) for v in min_pil_version.split('.')[:2])
major_required, minor_required = (int(v) for v in
min_pil_version.split('.')[:2])
if major_found < major_required or (major_found == major_required and
minor_found < minor_required):
if fill is None:
......
......@@ -3,16 +3,28 @@ import paddle.nn as nn
import paddle.nn.functional as F
def ratio2weight(targets, ratio):
pos_weights = targets * (1. - ratio)
neg_weights = (1. - targets) * ratio
weights = paddle.exp(neg_weights + pos_weights)
# for RAP dataloader, targets element may be 2, with or without smooth, some element must great than 1
weights = weights - weights * (targets > 1)
return weights
class MultiLabelLoss(nn.Layer):
"""
Multi-label loss
"""
def __init__(self, epsilon=None):
def __init__(self, epsilon=None, weight_ratio=None):
super().__init__()
if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
epsilon = None
self.epsilon = epsilon
self.weight_ratio = weight_ratio
def _labelsmoothing(self, target, class_num):
if target.ndim == 1 or target.shape[-1] != class_num:
......@@ -26,11 +38,16 @@ class MultiLabelLoss(nn.Layer):
def _binary_crossentropy(self, input, target, class_num):
if self.epsilon is not None:
target = self._labelsmoothing(target, class_num)
cost = F.binary_cross_entropy_with_logits(
logit=input, label=target)
else:
cost = F.binary_cross_entropy_with_logits(
logit=input, label=target)
cost = F.binary_cross_entropy_with_logits(logit=input, label=target)
if self.weight_ratio is not None:
targets_mask = paddle.cast(target > 0.5, 'float32')
weight = ratio2weight(targets_mask,
paddle.to_tensor(self.weight_ratio))
weight = weight * (target > -1)
cost = cost * weight
import pdb
pdb.set_trace()
return cost
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册