resnet.py 20.5 KB
Newer Older
C
cuicheng01 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
C
cuicheng01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
gaotingquan 已提交
15 16
# reference: https://arxiv.org/pdf/1512.03385

C
cuicheng01 已提交
17
from __future__ import absolute_import, division, print_function
C
cuicheng01 已提交
18 19 20 21 22 23 24 25 26 27

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math

C
cuicheng01 已提交
28
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
D
dongshuilong 已提交
29
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
30 31

MODEL_URLS = {
D
dongshuilong 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    "ResNet18":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams",
    "ResNet18_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams",
    "ResNet34":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams",
    "ResNet34_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams",
    "ResNet50":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams",
    "ResNet50_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams",
    "ResNet101":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams",
    "ResNet101_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams",
    "ResNet152":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams",
    "ResNet152_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams",
    "ResNet200_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams",
C
cuicheng01 已提交
54
}
C
cuicheng01 已提交
55

56 57 58 59 60 61 62 63 64
MODEL_STAGES_PATTERN = {
    "ResNet18": ["blocks[1]", "blocks[3]", "blocks[5]", "blocks[7]"],
    "ResNet34": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
    "ResNet50": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
    "ResNet101": ["blocks[2]", "blocks[6]", "blocks[29]", "blocks[32]"],
    "ResNet152": ["blocks[2]", "blocks[10]", "blocks[46]", "blocks[49]"],
    "ResNet200": ["blocks[2]", "blocks[14]", "blocks[62]", "blocks[65]"]
}

C
cuicheng01 已提交
65 66 67 68 69 70 71 72 73 74
__all__ = MODEL_URLS.keys()
'''
ResNet config: dict.
    key: depth of ResNet.
    values: config's dict of specific model.
        keys:
            block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
            block_depth: The number of blocks in different stages in ResNet.
            num_channels: The number of channels to enter the next stage.
'''
C
cuicheng01 已提交
75 76
NET_CONFIG = {
    "18": {
D
dongshuilong 已提交
77 78 79 80
        "block_type": "BasicBlock",
        "block_depth": [2, 2, 2, 2],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
81
    "34": {
D
dongshuilong 已提交
82 83 84 85
        "block_type": "BasicBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
86
    "50": {
D
dongshuilong 已提交
87 88 89 90
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
91
    "101": {
D
dongshuilong 已提交
92 93 94 95
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 23, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
96
    "152": {
D
dongshuilong 已提交
97 98 99 100
        "block_type": "BottleneckBlock",
        "block_depth": [3, 8, 36, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
101
    "200": {
D
dongshuilong 已提交
102 103 104 105
        "block_type": "BottleneckBlock",
        "block_depth": [3, 12, 48, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
106 107 108 109 110 111 112 113 114 115 116 117
}


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
118 119
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
120
        super().__init__()
C
cuicheng01 已提交
121 122
        self.is_vd_mode = is_vd_mode
        self.act = act
C
cuicheng01 已提交
123
        self.avg_pool = AvgPool2D(
C
cuicheng01 已提交
124 125 126 127 128 129 130 131 132
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
133 134
            bias_attr=False,
            data_format=data_format)
C
cuicheng01 已提交
135 136 137
        self.bn = BatchNorm(
            num_filters,
            param_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
138 139
            bias_attr=ParamAttr(learning_rate=lr_mult),
            data_layout=data_format)
C
cuicheng01 已提交
140 141 142 143
        self.relu = nn.ReLU()

    def forward(self, x):
        if self.is_vd_mode:
C
cuicheng01 已提交
144
            x = self.avg_pool(x)
C
cuicheng01 已提交
145 146 147 148 149 150 151 152
        x = self.conv(x)
        x = self.bn(x)
        if self.act:
            x = self.relu(x)
        return x


class BottleneckBlock(TheseusLayer):
littletomatodonkey's avatar
littletomatodonkey 已提交
153 154 155 156 157 158 159 160
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
161
        super().__init__()
C
cuicheng01 已提交
162 163 164 165 166

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
C
cuicheng01 已提交
167
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
168 169
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
170 171 172 173 174
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
175
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
176 177
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
178 179 180 181 182
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
183 184
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
185 186 187 188 189 190 191 192

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride if if_first else 1,
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
193 194
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        self.relu = nn.ReLU()
        self.shortcut = shortcut

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        x = self.conv2(x)

        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class BasicBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
220 221
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
222 223
        super().__init__()

C
cuicheng01 已提交
224 225 226 227 228 229
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
230
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
231 232
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
233 234 235 236 237
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
238 239
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
240 241 242 243 244 245 246
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride if if_first else 1,
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
247 248
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        self.shortcut = shortcut
        self.relu = nn.ReLU()

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class ResNet(TheseusLayer):
C
cuicheng01 已提交
266 267 268 269 270 271 272 273 274
    """
    ResNet
    Args:
        config: dict. config of ResNet.
        version: str="vb". Different version of ResNet, version vd can perform better. 
        class_num: int=1000. The number of classes.
        lr_mult_list: list. Control the learning rate of different stages.
    Returns:
        model: nn.Layer. Specific ResNet model depends on args.
C
cuicheng01 已提交
275
    """
D
dongshuilong 已提交
276

C
cuicheng01 已提交
277 278
    def __init__(self,
                 config,
279
                 stages_pattern,
C
cuicheng01 已提交
280
                 version="vb",
H
HydrogenSulfate 已提交
281
                 stem_act="relu",
C
cuicheng01 已提交
282
                 class_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
283 284
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
                 data_format="NCHW",
W
weishengyu 已提交
285
                 input_image_channel=3,
286 287
                 return_patterns=None,
                 return_stages=None):
C
cuicheng01 已提交
288
        super().__init__()
C
cuicheng01 已提交
289 290 291 292

        self.cfg = config
        self.lr_mult_list = lr_mult_list
        self.is_vd_mode = version == "vd"
C
cuicheng01 已提交
293 294 295 296 297 298
        self.class_num = class_num
        self.num_filters = [64, 128, 256, 512]
        self.block_depth = self.cfg["block_depth"]
        self.block_type = self.cfg["block_type"]
        self.num_channels = self.cfg["num_channels"]
        self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
D
dongshuilong 已提交
299

C
cuicheng01 已提交
300 301 302 303
        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
D
dongshuilong 已提交
304 305 306
        assert len(self.lr_mult_list
                   ) == 5, "lr_mult_list length should be 5 but got {}".format(
                       len(self.lr_mult_list))
C
cuicheng01 已提交
307 308

        self.stem_cfg = {
C
cuicheng01 已提交
309
            #num_channels, num_filters, filter_size, stride
littletomatodonkey's avatar
littletomatodonkey 已提交
310 311 312
            "vb": [[input_image_channel, 64, 7, 2]],
            "vd":
            [[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
D
dongshuilong 已提交
313 314
        }

H
HydrogenSulfate 已提交
315
        self.stem = nn.Sequential(*[
C
cuicheng01 已提交
316
            ConvBNLayer(
D
dongshuilong 已提交
317 318 319 320
                num_channels=in_c,
                num_filters=out_c,
                filter_size=k,
                stride=s,
W
dbg  
weishengyu 已提交
321
                act=stem_act,
littletomatodonkey's avatar
littletomatodonkey 已提交
322 323
                lr_mult=self.lr_mult_list[0],
                data_format=data_format)
C
cuicheng01 已提交
324 325
            for in_c, out_c, k, s in self.stem_cfg[version]
        ])
D
dongshuilong 已提交
326

littletomatodonkey's avatar
littletomatodonkey 已提交
327 328
        self.max_pool = MaxPool2D(
            kernel_size=3, stride=2, padding=1, data_format=data_format)
C
cuicheng01 已提交
329 330
        block_list = []
        for block_idx in range(len(self.block_depth)):
C
cuicheng01 已提交
331
            shortcut = False
C
cuicheng01 已提交
332
            for i in range(self.block_depth[block_idx]):
D
dongshuilong 已提交
333 334 335
                block_list.append(globals()[self.block_type](
                    num_channels=self.num_channels[block_idx] if i == 0 else
                    self.num_filters[block_idx] * self.channels_mult,
C
cuicheng01 已提交
336 337
                    num_filters=self.num_filters[block_idx],
                    stride=2 if i == 0 and block_idx != 0 else 1,
C
cuicheng01 已提交
338
                    shortcut=shortcut,
C
cuicheng01 已提交
339
                    if_first=block_idx == i == 0 if version == "vd" else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
340 341
                    lr_mult=self.lr_mult_list[block_idx + 1],
                    data_format=data_format))
D
dongshuilong 已提交
342
                shortcut = True
C
cuicheng01 已提交
343
        self.blocks = nn.Sequential(*block_list)
C
cuicheng01 已提交
344

littletomatodonkey's avatar
littletomatodonkey 已提交
345
        self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format)
346
        self.flatten = nn.Flatten()
W
dbg  
weishengyu 已提交
347
        self.avg_pool_channels = self.num_channels[-1] * 2
C
cuicheng01 已提交
348
        stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0)
C
cuicheng01 已提交
349
        self.fc = Linear(
C
cuicheng01 已提交
350
            self.avg_pool_channels,
C
cuicheng01 已提交
351
            self.class_num,
D
dongshuilong 已提交
352
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
C
cuicheng01 已提交
353

littletomatodonkey's avatar
littletomatodonkey 已提交
354
        self.data_format = data_format
355 356 357 358 359

        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
littletomatodonkey's avatar
littletomatodonkey 已提交
360

C
cuicheng01 已提交
361
    def forward(self, x):
littletomatodonkey's avatar
littletomatodonkey 已提交
362 363 364 365 366 367 368 369 370 371
        with paddle.static.amp.fp16_guard():
            if self.data_format == "NHWC":
                x = paddle.transpose(x, [0, 2, 3, 1])
                x.stop_gradient = True
            x = self.stem(x)
            x = self.max_pool(x)
            x = self.blocks(x)
            x = self.avg_pool(x)
            x = self.flatten(x)
            x = self.fc(x)
C
cuicheng01 已提交
372 373 374
        return x


D
dongshuilong 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def ResNet18(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
389 390 391
    """
    ResNet18
    Args:
D
dongshuilong 已提交
392 393 394
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
395 396 397
    Returns:
        model: nn.Layer. Specific `ResNet18` model depends on args.
    """
398 399 400 401 402
    model = ResNet(
        config=NET_CONFIG["18"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
403
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld)
C
cuicheng01 已提交
404 405
    return model

C
cuicheng01 已提交
406

D
dongshuilong 已提交
407
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
408 409 410
    """
    ResNet18_vd
    Args:
D
dongshuilong 已提交
411 412 413
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
414 415 416
    Returns:
        model: nn.Layer. Specific `ResNet18_vd` model depends on args.
    """
417 418 419 420 421
    model = ResNet(
        config=NET_CONFIG["18"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
422
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld)
C
cuicheng01 已提交
423 424
    return model

C
cuicheng01 已提交
425

D
dongshuilong 已提交
426
def ResNet34(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
427 428 429
    """
    ResNet34
    Args:
D
dongshuilong 已提交
430 431 432
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
433
    Returns:
C
cuicheng01 已提交
434
        model: nn.Layer. Specific `ResNet34` model depends on args.
C
cuicheng01 已提交
435
    """
436 437 438 439 440
    model = ResNet(
        config=NET_CONFIG["34"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
441
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld)
C
cuicheng01 已提交
442 443 444
    return model


D
dongshuilong 已提交
445
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
446 447 448
    """
    ResNet34_vd
    Args:
D
dongshuilong 已提交
449 450 451
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
452
    Returns:
C
cuicheng01 已提交
453
        model: nn.Layer. Specific `ResNet34_vd` model depends on args.
C
cuicheng01 已提交
454
    """
455 456 457 458 459
    model = ResNet(
        config=NET_CONFIG["34"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
460
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld)
C
cuicheng01 已提交
461 462 463
    return model


D
dongshuilong 已提交
464
def ResNet50(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
465 466 467
    """
    ResNet50
    Args:
D
dongshuilong 已提交
468 469 470
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
471 472 473
    Returns:
        model: nn.Layer. Specific `ResNet50` model depends on args.
    """
474 475 476 477 478
    model = ResNet(
        config=NET_CONFIG["50"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
479
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
C
cuicheng01 已提交
480 481
    return model

C
cuicheng01 已提交
482

D
dongshuilong 已提交
483
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
484 485 486
    """
    ResNet50_vd
    Args:
D
dongshuilong 已提交
487 488 489
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
490 491 492
    Returns:
        model: nn.Layer. Specific `ResNet50_vd` model depends on args.
    """
493 494 495 496 497
    model = ResNet(
        config=NET_CONFIG["50"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
498
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld)
C
cuicheng01 已提交
499 500
    return model

C
cuicheng01 已提交
501

D
dongshuilong 已提交
502
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
503 504 505
    """
    ResNet101
    Args:
D
dongshuilong 已提交
506 507 508
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
509 510 511
    Returns:
        model: nn.Layer. Specific `ResNet101` model depends on args.
    """
512 513 514 515 516
    model = ResNet(
        config=NET_CONFIG["101"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
517
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
C
cuicheng01 已提交
518 519
    return model

C
cuicheng01 已提交
520

D
dongshuilong 已提交
521
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
522 523 524
    """
    ResNet101_vd
    Args:
D
dongshuilong 已提交
525 526 527
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
528 529 530
    Returns:
        model: nn.Layer. Specific `ResNet101_vd` model depends on args.
    """
531 532 533 534 535
    model = ResNet(
        config=NET_CONFIG["101"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
536
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld)
C
cuicheng01 已提交
537 538
    return model

C
cuicheng01 已提交
539

D
dongshuilong 已提交
540
def ResNet152(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
541 542 543
    """
    ResNet152
    Args:
D
dongshuilong 已提交
544 545 546
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
547 548 549
    Returns:
        model: nn.Layer. Specific `ResNet152` model depends on args.
    """
550 551 552 553 554
    model = ResNet(
        config=NET_CONFIG["152"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
555
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld)
C
cuicheng01 已提交
556 557
    return model

C
cuicheng01 已提交
558

D
dongshuilong 已提交
559
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
560 561 562
    """
    ResNet152_vd
    Args:
D
dongshuilong 已提交
563 564 565
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
566 567 568
    Returns:
        model: nn.Layer. Specific `ResNet152_vd` model depends on args.
    """
569 570 571 572 573
    model = ResNet(
        config=NET_CONFIG["152"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
574
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld)
C
cuicheng01 已提交
575 576 577
    return model


D
dongshuilong 已提交
578
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
579 580 581
    """
    ResNet200_vd
    Args:
D
dongshuilong 已提交
582 583 584
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
585 586 587
    Returns:
        model: nn.Layer. Specific `ResNet200_vd` model depends on args.
    """
588 589 590 591 592
    model = ResNet(
        config=NET_CONFIG["200"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet200"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
593
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld)
C
cuicheng01 已提交
594
    return model