resnet.py 21.2 KB
Newer Older
C
cuicheng01 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
C
cuicheng01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
gaotingquan 已提交
15 16
# reference: https://arxiv.org/pdf/1512.03385

C
cuicheng01 已提交
17
from __future__ import absolute_import, division, print_function
C
cuicheng01 已提交
18 19 20 21 22

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
C
cuicheng01 已提交
23
from paddle.nn import Conv2D, BatchNorm, Linear, BatchNorm2D
C
cuicheng01 已提交
24 25
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
C
cuicheng01 已提交
26
from paddle.regularizer import L2Decay
C
cuicheng01 已提交
27 28
import math

C
cuicheng01 已提交
29
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
D
dongshuilong 已提交
30
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
31 32

MODEL_URLS = {
D
dongshuilong 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    "ResNet18":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams",
    "ResNet18_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams",
    "ResNet34":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams",
    "ResNet34_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams",
    "ResNet50":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams",
    "ResNet50_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams",
    "ResNet101":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams",
    "ResNet101_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams",
    "ResNet152":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams",
    "ResNet152_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams",
    "ResNet200_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams",
C
cuicheng01 已提交
55
}
C
cuicheng01 已提交
56

57 58 59 60 61 62 63 64 65
MODEL_STAGES_PATTERN = {
    "ResNet18": ["blocks[1]", "blocks[3]", "blocks[5]", "blocks[7]"],
    "ResNet34": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
    "ResNet50": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
    "ResNet101": ["blocks[2]", "blocks[6]", "blocks[29]", "blocks[32]"],
    "ResNet152": ["blocks[2]", "blocks[10]", "blocks[46]", "blocks[49]"],
    "ResNet200": ["blocks[2]", "blocks[14]", "blocks[62]", "blocks[65]"]
}

C
cuicheng01 已提交
66 67 68 69 70 71 72 73 74 75
__all__ = MODEL_URLS.keys()
'''
ResNet config: dict.
    key: depth of ResNet.
    values: config's dict of specific model.
        keys:
            block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
            block_depth: The number of blocks in different stages in ResNet.
            num_channels: The number of channels to enter the next stage.
'''
C
cuicheng01 已提交
76 77
NET_CONFIG = {
    "18": {
D
dongshuilong 已提交
78 79 80 81
        "block_type": "BasicBlock",
        "block_depth": [2, 2, 2, 2],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
82
    "34": {
D
dongshuilong 已提交
83 84 85 86
        "block_type": "BasicBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
87
    "50": {
D
dongshuilong 已提交
88 89 90 91
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
92
    "101": {
D
dongshuilong 已提交
93 94 95 96
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 23, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
97
    "152": {
D
dongshuilong 已提交
98 99 100 101
        "block_type": "BottleneckBlock",
        "block_depth": [3, 8, 36, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
102
    "200": {
D
dongshuilong 已提交
103 104 105 106
        "block_type": "BottleneckBlock",
        "block_depth": [3, 12, 48, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
107 108 109 110 111 112 113 114 115 116 117 118
}


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
119 120
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
121
        super().__init__()
C
cuicheng01 已提交
122 123
        self.is_vd_mode = is_vd_mode
        self.act = act
C
cuicheng01 已提交
124
        self.avg_pool = AvgPool2D(
C
cuicheng01 已提交
125
            kernel_size=2, stride=stride, padding="SAME", ceil_mode=True)
C
cuicheng01 已提交
126 127 128 129
        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
C
cuicheng01 已提交
130
            stride=1 if is_vd_mode else stride,
C
cuicheng01 已提交
131 132 133
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
134 135
            bias_attr=False,
            data_format=data_format)
C
cuicheng01 已提交
136 137 138 139

        weight_attr = ParamAttr(learning_rate=lr_mult, trainable=True)
        bias_attr = ParamAttr(learning_rate=lr_mult, trainable=True)

C
cuicheng01 已提交
140 141 142
        self.bn = BatchNorm(
            num_filters,
            param_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
143 144
            bias_attr=ParamAttr(learning_rate=lr_mult),
            data_layout=data_format)
C
cuicheng01 已提交
145 146 147 148
        self.relu = nn.ReLU()

    def forward(self, x):
        if self.is_vd_mode:
C
cuicheng01 已提交
149
            x = self.avg_pool(x)
C
cuicheng01 已提交
150 151 152 153 154 155 156 157
        x = self.conv(x)
        x = self.bn(x)
        if self.act:
            x = self.relu(x)
        return x


class BottleneckBlock(TheseusLayer):
littletomatodonkey's avatar
littletomatodonkey 已提交
158 159 160 161 162 163 164 165
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
166
        super().__init__()
C
cuicheng01 已提交
167 168 169 170
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
C
cuicheng01 已提交
171
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
172 173
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
174 175 176 177 178
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
179
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
180 181
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
182 183 184 185 186
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
187 188
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
189 190 191 192 193 194

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
C
cuicheng01 已提交
195
                stride=stride,
C
cuicheng01 已提交
196
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
197 198
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
199

C
cuicheng01 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        self.relu = nn.ReLU()
        self.shortcut = shortcut

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        x = self.conv2(x)

        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class BasicBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
225 226
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
227 228
        super().__init__()

C
cuicheng01 已提交
229 230 231 232 233 234
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
235
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
236 237
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
238 239 240 241 242
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
243 244
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
245 246 247 248 249
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
C
cuicheng01 已提交
250
                stride=stride,
C
cuicheng01 已提交
251
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
252 253
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        self.shortcut = shortcut
        self.relu = nn.ReLU()

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class ResNet(TheseusLayer):
C
cuicheng01 已提交
271 272 273 274 275 276 277 278 279
    """
    ResNet
    Args:
        config: dict. config of ResNet.
        version: str="vb". Different version of ResNet, version vd can perform better. 
        class_num: int=1000. The number of classes.
        lr_mult_list: list. Control the learning rate of different stages.
    Returns:
        model: nn.Layer. Specific ResNet model depends on args.
C
cuicheng01 已提交
280
    """
D
dongshuilong 已提交
281

C
cuicheng01 已提交
282 283
    def __init__(self,
                 config,
284
                 stages_pattern,
C
cuicheng01 已提交
285
                 version="vb",
H
HydrogenSulfate 已提交
286
                 stem_act="relu",
C
cuicheng01 已提交
287
                 class_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
288
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
C
cuicheng01 已提交
289
                 stride_list=[2, 2, 2, 2, 2],
littletomatodonkey's avatar
littletomatodonkey 已提交
290
                 data_format="NCHW",
W
weishengyu 已提交
291
                 input_image_channel=3,
292
                 return_patterns=None,
C
cuicheng01 已提交
293 294
                 return_stages=None,
                 **kargs):
C
cuicheng01 已提交
295
        super().__init__()
C
cuicheng01 已提交
296 297 298

        self.cfg = config
        self.lr_mult_list = lr_mult_list
C
cuicheng01 已提交
299
        self.stride_list = stride_list
C
cuicheng01 已提交
300
        self.is_vd_mode = version == "vd"
C
cuicheng01 已提交
301 302 303 304 305 306
        self.class_num = class_num
        self.num_filters = [64, 128, 256, 512]
        self.block_depth = self.cfg["block_depth"]
        self.block_type = self.cfg["block_type"]
        self.num_channels = self.cfg["num_channels"]
        self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
D
dongshuilong 已提交
307

C
cuicheng01 已提交
308 309 310 311
        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
D
dongshuilong 已提交
312 313 314
        assert len(self.lr_mult_list
                   ) == 5, "lr_mult_list length should be 5 but got {}".format(
                       len(self.lr_mult_list))
C
cuicheng01 已提交
315

C
cuicheng01 已提交
316 317 318 319 320 321 322 323
        assert isinstance(self.stride_list, (
            list, tuple
        )), "stride_list should be in (list, tuple) but got {}".format(
            type(self.stride_list))
        assert len(self.stride_list
                   ) == 5, "stride_list length should be 5 but got {}".format(
                       len(self.stride_list))

C
cuicheng01 已提交
324
        self.stem_cfg = {
C
cuicheng01 已提交
325
            #num_channels, num_filters, filter_size, stride
C
cuicheng01 已提交
326
            "vb": [[input_image_channel, 64, 7, self.stride_list[0]]],
littletomatodonkey's avatar
littletomatodonkey 已提交
327
            "vd":
C
cuicheng01 已提交
328
            [[input_image_channel, 32, 3, self.stride_list[0]], [32, 32, 3, 1], [32, 64, 3, 1]]
D
dongshuilong 已提交
329 330
        }

C
cuicheng01 已提交
331
        self.stem = nn.Sequential(* [
C
cuicheng01 已提交
332
            ConvBNLayer(
D
dongshuilong 已提交
333 334 335 336
                num_channels=in_c,
                num_filters=out_c,
                filter_size=k,
                stride=s,
W
dbg  
weishengyu 已提交
337
                act=stem_act,
littletomatodonkey's avatar
littletomatodonkey 已提交
338 339
                lr_mult=self.lr_mult_list[0],
                data_format=data_format)
C
cuicheng01 已提交
340 341
            for in_c, out_c, k, s in self.stem_cfg[version]
        ])
D
dongshuilong 已提交
342

littletomatodonkey's avatar
littletomatodonkey 已提交
343
        self.max_pool = MaxPool2D(
C
cuicheng01 已提交
344
            kernel_size=3, stride=stride_list[1], padding=1, data_format=data_format)
C
cuicheng01 已提交
345 346
        block_list = []
        for block_idx in range(len(self.block_depth)):
C
cuicheng01 已提交
347
            shortcut = False
C
cuicheng01 已提交
348
            for i in range(self.block_depth[block_idx]):
D
dongshuilong 已提交
349 350 351
                block_list.append(globals()[self.block_type](
                    num_channels=self.num_channels[block_idx] if i == 0 else
                    self.num_filters[block_idx] * self.channels_mult,
C
cuicheng01 已提交
352
                    num_filters=self.num_filters[block_idx],
C
cuicheng01 已提交
353
                    stride=self.stride_list[block_idx+1] if i == 0 and block_idx != 0 else 1,
C
cuicheng01 已提交
354
                    shortcut=shortcut,
C
cuicheng01 已提交
355
                    if_first=block_idx == i == 0 if version == "vd" else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
356 357
                    lr_mult=self.lr_mult_list[block_idx + 1],
                    data_format=data_format))
D
dongshuilong 已提交
358
                shortcut = True
C
cuicheng01 已提交
359
        self.blocks = nn.Sequential(*block_list)
C
cuicheng01 已提交
360

littletomatodonkey's avatar
littletomatodonkey 已提交
361
        self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format)
362
        self.flatten = nn.Flatten()
W
dbg  
weishengyu 已提交
363
        self.avg_pool_channels = self.num_channels[-1] * 2
C
cuicheng01 已提交
364
        stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0)
C
cuicheng01 已提交
365
        self.fc = Linear(
C
cuicheng01 已提交
366
            self.avg_pool_channels,
C
cuicheng01 已提交
367
            self.class_num,
D
dongshuilong 已提交
368
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
C
cuicheng01 已提交
369

littletomatodonkey's avatar
littletomatodonkey 已提交
370
        self.data_format = data_format
371 372 373 374 375

        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
littletomatodonkey's avatar
littletomatodonkey 已提交
376

C
cuicheng01 已提交
377
    def forward(self, x):
littletomatodonkey's avatar
littletomatodonkey 已提交
378 379 380 381 382 383 384 385 386 387
        with paddle.static.amp.fp16_guard():
            if self.data_format == "NHWC":
                x = paddle.transpose(x, [0, 2, 3, 1])
                x.stop_gradient = True
            x = self.stem(x)
            x = self.max_pool(x)
            x = self.blocks(x)
            x = self.avg_pool(x)
            x = self.flatten(x)
            x = self.fc(x)
C
cuicheng01 已提交
388 389 390
        return x


D
dongshuilong 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def ResNet18(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
405 406 407
    """
    ResNet18
    Args:
D
dongshuilong 已提交
408 409 410
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
411 412 413
    Returns:
        model: nn.Layer. Specific `ResNet18` model depends on args.
    """
414 415 416 417 418
    model = ResNet(
        config=NET_CONFIG["18"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
419
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld)
C
cuicheng01 已提交
420 421
    return model

C
cuicheng01 已提交
422

D
dongshuilong 已提交
423
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
424 425 426
    """
    ResNet18_vd
    Args:
D
dongshuilong 已提交
427 428 429
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
430 431 432
    Returns:
        model: nn.Layer. Specific `ResNet18_vd` model depends on args.
    """
433 434 435 436 437
    model = ResNet(
        config=NET_CONFIG["18"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
438
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld)
C
cuicheng01 已提交
439 440
    return model

C
cuicheng01 已提交
441

D
dongshuilong 已提交
442
def ResNet34(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
443 444 445
    """
    ResNet34
    Args:
D
dongshuilong 已提交
446 447 448
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
449
    Returns:
C
cuicheng01 已提交
450
        model: nn.Layer. Specific `ResNet34` model depends on args.
C
cuicheng01 已提交
451
    """
452 453 454 455 456
    model = ResNet(
        config=NET_CONFIG["34"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
457
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld)
C
cuicheng01 已提交
458 459 460
    return model


D
dongshuilong 已提交
461
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
462 463 464
    """
    ResNet34_vd
    Args:
D
dongshuilong 已提交
465 466 467
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
468
    Returns:
C
cuicheng01 已提交
469
        model: nn.Layer. Specific `ResNet34_vd` model depends on args.
C
cuicheng01 已提交
470
    """
471 472 473 474 475
    model = ResNet(
        config=NET_CONFIG["34"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
476
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld)
C
cuicheng01 已提交
477 478 479
    return model


D
dongshuilong 已提交
480
def ResNet50(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
481 482 483
    """
    ResNet50
    Args:
D
dongshuilong 已提交
484 485 486
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
487 488 489
    Returns:
        model: nn.Layer. Specific `ResNet50` model depends on args.
    """
490 491 492 493 494
    model = ResNet(
        config=NET_CONFIG["50"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
495
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
C
cuicheng01 已提交
496 497
    return model

C
cuicheng01 已提交
498

D
dongshuilong 已提交
499
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
500 501 502
    """
    ResNet50_vd
    Args:
D
dongshuilong 已提交
503 504 505
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
506 507 508
    Returns:
        model: nn.Layer. Specific `ResNet50_vd` model depends on args.
    """
509 510 511 512 513
    model = ResNet(
        config=NET_CONFIG["50"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
514
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld)
C
cuicheng01 已提交
515 516
    return model

C
cuicheng01 已提交
517

D
dongshuilong 已提交
518
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
519 520 521
    """
    ResNet101
    Args:
D
dongshuilong 已提交
522 523 524
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
525 526 527
    Returns:
        model: nn.Layer. Specific `ResNet101` model depends on args.
    """
528 529 530 531 532
    model = ResNet(
        config=NET_CONFIG["101"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
533
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
C
cuicheng01 已提交
534 535
    return model

C
cuicheng01 已提交
536

D
dongshuilong 已提交
537
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
538 539 540
    """
    ResNet101_vd
    Args:
D
dongshuilong 已提交
541 542 543
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
544 545 546
    Returns:
        model: nn.Layer. Specific `ResNet101_vd` model depends on args.
    """
547 548 549 550 551
    model = ResNet(
        config=NET_CONFIG["101"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
552
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld)
C
cuicheng01 已提交
553 554
    return model

C
cuicheng01 已提交
555

D
dongshuilong 已提交
556
def ResNet152(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
557 558 559
    """
    ResNet152
    Args:
D
dongshuilong 已提交
560 561 562
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
563 564 565
    Returns:
        model: nn.Layer. Specific `ResNet152` model depends on args.
    """
566 567 568 569 570
    model = ResNet(
        config=NET_CONFIG["152"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
571
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld)
C
cuicheng01 已提交
572 573
    return model

C
cuicheng01 已提交
574

D
dongshuilong 已提交
575
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
576 577 578
    """
    ResNet152_vd
    Args:
D
dongshuilong 已提交
579 580 581
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
582 583 584
    Returns:
        model: nn.Layer. Specific `ResNet152_vd` model depends on args.
    """
585 586 587 588 589
    model = ResNet(
        config=NET_CONFIG["152"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
590
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld)
C
cuicheng01 已提交
591 592 593
    return model


D
dongshuilong 已提交
594
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
595 596 597
    """
    ResNet200_vd
    Args:
D
dongshuilong 已提交
598 599 600
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
601 602 603
    Returns:
        model: nn.Layer. Specific `ResNet200_vd` model depends on args.
    """
604 605 606 607 608
    model = ResNet(
        config=NET_CONFIG["200"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet200"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
609
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld)
C
cuicheng01 已提交
610
    return model