resnet.py 19.0 KB
Newer Older
C
cuicheng01 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
C
cuicheng01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
cuicheng01 已提交
15
from __future__ import absolute_import, division, print_function
C
cuicheng01 已提交
16 17 18 19 20 21 22 23 24 25

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math

C
cuicheng01 已提交
26
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
D
dongshuilong 已提交
27
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
28 29

MODEL_URLS = {
D
dongshuilong 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    "ResNet18":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams",
    "ResNet18_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams",
    "ResNet34":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams",
    "ResNet34_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams",
    "ResNet50":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams",
    "ResNet50_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams",
    "ResNet101":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams",
    "ResNet101_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams",
    "ResNet152":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams",
    "ResNet152_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams",
    "ResNet200_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams",
C
cuicheng01 已提交
52
}
C
cuicheng01 已提交
53

C
cuicheng01 已提交
54 55 56 57 58 59 60 61 62 63
__all__ = MODEL_URLS.keys()
'''
ResNet config: dict.
    key: depth of ResNet.
    values: config's dict of specific model.
        keys:
            block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
            block_depth: The number of blocks in different stages in ResNet.
            num_channels: The number of channels to enter the next stage.
'''
C
cuicheng01 已提交
64 65
NET_CONFIG = {
    "18": {
D
dongshuilong 已提交
66 67 68 69
        "block_type": "BasicBlock",
        "block_depth": [2, 2, 2, 2],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
70
    "34": {
D
dongshuilong 已提交
71 72 73 74
        "block_type": "BasicBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
75
    "50": {
D
dongshuilong 已提交
76 77 78 79
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
80
    "101": {
D
dongshuilong 已提交
81 82 83 84
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 23, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
85
    "152": {
D
dongshuilong 已提交
86 87 88 89
        "block_type": "BottleneckBlock",
        "block_depth": [3, 8, 36, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
90
    "200": {
D
dongshuilong 已提交
91 92 93 94
        "block_type": "BottleneckBlock",
        "block_depth": [3, 12, 48, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
95 96 97 98 99 100 101 102 103 104 105 106
}


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
107 108
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
109
        super().__init__()
C
cuicheng01 已提交
110 111
        self.is_vd_mode = is_vd_mode
        self.act = act
C
cuicheng01 已提交
112
        self.avg_pool = AvgPool2D(
C
cuicheng01 已提交
113 114 115 116 117 118 119 120 121
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
122 123
            bias_attr=False,
            data_format=data_format)
C
cuicheng01 已提交
124 125 126
        self.bn = BatchNorm(
            num_filters,
            param_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
127 128
            bias_attr=ParamAttr(learning_rate=lr_mult),
            data_layout=data_format)
C
cuicheng01 已提交
129 130 131 132
        self.relu = nn.ReLU()

    def forward(self, x):
        if self.is_vd_mode:
C
cuicheng01 已提交
133
            x = self.avg_pool(x)
C
cuicheng01 已提交
134 135 136 137 138 139 140 141
        x = self.conv(x)
        x = self.bn(x)
        if self.act:
            x = self.relu(x)
        return x


class BottleneckBlock(TheseusLayer):
littletomatodonkey's avatar
littletomatodonkey 已提交
142 143 144 145 146 147 148 149
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
150
        super().__init__()
C
cuicheng01 已提交
151 152 153 154 155

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
C
cuicheng01 已提交
156
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
157 158
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
159 160 161 162 163
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
164
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
165 166
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
167 168 169 170 171
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
172 173
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
174 175 176 177 178 179 180 181

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride if if_first else 1,
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
182 183
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        self.relu = nn.ReLU()
        self.shortcut = shortcut

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        x = self.conv2(x)

        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class BasicBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
209 210
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
211 212
        super().__init__()

C
cuicheng01 已提交
213 214 215 216 217 218
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
219
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
220 221
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
222 223 224 225 226
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
227 228
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
229 230 231 232 233 234 235
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride if if_first else 1,
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
236 237
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        self.shortcut = shortcut
        self.relu = nn.ReLU()

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class ResNet(TheseusLayer):
C
cuicheng01 已提交
255 256 257 258 259 260 261 262 263
    """
    ResNet
    Args:
        config: dict. config of ResNet.
        version: str="vb". Different version of ResNet, version vd can perform better. 
        class_num: int=1000. The number of classes.
        lr_mult_list: list. Control the learning rate of different stages.
    Returns:
        model: nn.Layer. Specific ResNet model depends on args.
C
cuicheng01 已提交
264
    """
D
dongshuilong 已提交
265

C
cuicheng01 已提交
266 267
    def __init__(self,
                 config,
C
cuicheng01 已提交
268 269
                 version="vb",
                 class_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
270 271
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
                 data_format="NCHW",
W
weishengyu 已提交
272 273
                 input_image_channel=3,
                 return_patterns=None):
C
cuicheng01 已提交
274
        super().__init__()
C
cuicheng01 已提交
275 276 277 278

        self.cfg = config
        self.lr_mult_list = lr_mult_list
        self.is_vd_mode = version == "vd"
C
cuicheng01 已提交
279 280 281 282 283 284
        self.class_num = class_num
        self.num_filters = [64, 128, 256, 512]
        self.block_depth = self.cfg["block_depth"]
        self.block_type = self.cfg["block_type"]
        self.num_channels = self.cfg["num_channels"]
        self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
D
dongshuilong 已提交
285

C
cuicheng01 已提交
286 287 288 289
        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
D
dongshuilong 已提交
290 291 292
        assert len(self.lr_mult_list
                   ) == 5, "lr_mult_list length should be 5 but got {}".format(
                       len(self.lr_mult_list))
C
cuicheng01 已提交
293 294

        self.stem_cfg = {
C
cuicheng01 已提交
295
            #num_channels, num_filters, filter_size, stride
littletomatodonkey's avatar
littletomatodonkey 已提交
296 297 298
            "vb": [[input_image_channel, 64, 7, 2]],
            "vd":
            [[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
D
dongshuilong 已提交
299 300
        }

littletomatodonkey's avatar
littletomatodonkey 已提交
301
        self.stem = nn.Sequential(* [
C
cuicheng01 已提交
302
            ConvBNLayer(
D
dongshuilong 已提交
303 304 305 306 307
                num_channels=in_c,
                num_filters=out_c,
                filter_size=k,
                stride=s,
                act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
308 309
                lr_mult=self.lr_mult_list[0],
                data_format=data_format)
C
cuicheng01 已提交
310 311
            for in_c, out_c, k, s in self.stem_cfg[version]
        ])
D
dongshuilong 已提交
312

littletomatodonkey's avatar
littletomatodonkey 已提交
313 314
        self.max_pool = MaxPool2D(
            kernel_size=3, stride=2, padding=1, data_format=data_format)
C
cuicheng01 已提交
315 316
        block_list = []
        for block_idx in range(len(self.block_depth)):
C
cuicheng01 已提交
317
            shortcut = False
C
cuicheng01 已提交
318
            for i in range(self.block_depth[block_idx]):
D
dongshuilong 已提交
319 320 321
                block_list.append(globals()[self.block_type](
                    num_channels=self.num_channels[block_idx] if i == 0 else
                    self.num_filters[block_idx] * self.channels_mult,
C
cuicheng01 已提交
322 323
                    num_filters=self.num_filters[block_idx],
                    stride=2 if i == 0 and block_idx != 0 else 1,
C
cuicheng01 已提交
324
                    shortcut=shortcut,
C
cuicheng01 已提交
325
                    if_first=block_idx == i == 0 if version == "vd" else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
326 327
                    lr_mult=self.lr_mult_list[block_idx + 1],
                    data_format=data_format))
D
dongshuilong 已提交
328
                shortcut = True
C
cuicheng01 已提交
329
        self.blocks = nn.Sequential(*block_list)
C
cuicheng01 已提交
330

littletomatodonkey's avatar
littletomatodonkey 已提交
331
        self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format)
332
        self.flatten = nn.Flatten()
W
dbg  
weishengyu 已提交
333
        self.avg_pool_channels = self.num_channels[-1] * 2
C
cuicheng01 已提交
334
        stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0)
C
cuicheng01 已提交
335
        self.fc = Linear(
C
cuicheng01 已提交
336
            self.avg_pool_channels,
C
cuicheng01 已提交
337
            self.class_num,
D
dongshuilong 已提交
338
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
C
cuicheng01 已提交
339

littletomatodonkey's avatar
littletomatodonkey 已提交
340
        self.data_format = data_format
W
weishengyu 已提交
341 342
        if return_patterns is not None:
            self.update_res(return_patterns)
littletomatodonkey's avatar
littletomatodonkey 已提交
343

C
cuicheng01 已提交
344
    def forward(self, x):
littletomatodonkey's avatar
littletomatodonkey 已提交
345 346 347 348 349 350 351 352 353 354
        with paddle.static.amp.fp16_guard():
            if self.data_format == "NHWC":
                x = paddle.transpose(x, [0, 2, 3, 1])
                x.stop_gradient = True
            x = self.stem(x)
            x = self.max_pool(x)
            x = self.blocks(x)
            x = self.avg_pool(x)
            x = self.flatten(x)
            x = self.fc(x)
C
cuicheng01 已提交
355 356 357
        return x


D
dongshuilong 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def ResNet18(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
372 373 374
    """
    ResNet18
    Args:
D
dongshuilong 已提交
375 376 377
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
378 379 380
    Returns:
        model: nn.Layer. Specific `ResNet18` model depends on args.
    """
D
dongshuilong 已提交
381 382
    model = ResNet(config=NET_CONFIG["18"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld)
C
cuicheng01 已提交
383 384
    return model

C
cuicheng01 已提交
385

D
dongshuilong 已提交
386
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
387 388 389
    """
    ResNet18_vd
    Args:
D
dongshuilong 已提交
390 391 392
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
393 394 395
    Returns:
        model: nn.Layer. Specific `ResNet18_vd` model depends on args.
    """
D
dongshuilong 已提交
396 397
    model = ResNet(config=NET_CONFIG["18"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld)
C
cuicheng01 已提交
398 399
    return model

C
cuicheng01 已提交
400

D
dongshuilong 已提交
401
def ResNet34(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
402 403 404
    """
    ResNet34
    Args:
D
dongshuilong 已提交
405 406 407
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
408
    Returns:
C
cuicheng01 已提交
409
        model: nn.Layer. Specific `ResNet34` model depends on args.
C
cuicheng01 已提交
410
    """
D
dongshuilong 已提交
411 412
    model = ResNet(config=NET_CONFIG["34"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld)
C
cuicheng01 已提交
413 414 415
    return model


D
dongshuilong 已提交
416
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
417 418 419
    """
    ResNet34_vd
    Args:
D
dongshuilong 已提交
420 421 422
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
423
    Returns:
C
cuicheng01 已提交
424
        model: nn.Layer. Specific `ResNet34_vd` model depends on args.
C
cuicheng01 已提交
425
    """
D
dongshuilong 已提交
426 427
    model = ResNet(config=NET_CONFIG["34"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld)
C
cuicheng01 已提交
428 429 430
    return model


D
dongshuilong 已提交
431
def ResNet50(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
432 433 434
    """
    ResNet50
    Args:
D
dongshuilong 已提交
435 436 437
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
438 439 440
    Returns:
        model: nn.Layer. Specific `ResNet50` model depends on args.
    """
D
dongshuilong 已提交
441 442
    model = ResNet(config=NET_CONFIG["50"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
C
cuicheng01 已提交
443 444
    return model

C
cuicheng01 已提交
445

D
dongshuilong 已提交
446
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
447 448 449
    """
    ResNet50_vd
    Args:
D
dongshuilong 已提交
450 451 452
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
453 454 455
    Returns:
        model: nn.Layer. Specific `ResNet50_vd` model depends on args.
    """
D
dongshuilong 已提交
456 457
    model = ResNet(config=NET_CONFIG["50"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld)
C
cuicheng01 已提交
458 459
    return model

C
cuicheng01 已提交
460

D
dongshuilong 已提交
461
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
462 463 464
    """
    ResNet101
    Args:
D
dongshuilong 已提交
465 466 467
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
468 469 470
    Returns:
        model: nn.Layer. Specific `ResNet101` model depends on args.
    """
D
dongshuilong 已提交
471 472
    model = ResNet(config=NET_CONFIG["101"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
C
cuicheng01 已提交
473 474
    return model

C
cuicheng01 已提交
475

D
dongshuilong 已提交
476
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
477 478 479
    """
    ResNet101_vd
    Args:
D
dongshuilong 已提交
480 481 482
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
483 484 485
    Returns:
        model: nn.Layer. Specific `ResNet101_vd` model depends on args.
    """
D
dongshuilong 已提交
486 487
    model = ResNet(config=NET_CONFIG["101"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld)
C
cuicheng01 已提交
488 489
    return model

C
cuicheng01 已提交
490

D
dongshuilong 已提交
491
def ResNet152(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
492 493 494
    """
    ResNet152
    Args:
D
dongshuilong 已提交
495 496 497
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
498 499 500
    Returns:
        model: nn.Layer. Specific `ResNet152` model depends on args.
    """
D
dongshuilong 已提交
501 502
    model = ResNet(config=NET_CONFIG["152"], version="vb", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld)
C
cuicheng01 已提交
503 504
    return model

C
cuicheng01 已提交
505

D
dongshuilong 已提交
506
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
507 508 509
    """
    ResNet152_vd
    Args:
D
dongshuilong 已提交
510 511 512
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
513 514 515
    Returns:
        model: nn.Layer. Specific `ResNet152_vd` model depends on args.
    """
D
dongshuilong 已提交
516 517
    model = ResNet(config=NET_CONFIG["152"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld)
C
cuicheng01 已提交
518 519 520
    return model


D
dongshuilong 已提交
521
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
522 523 524
    """
    ResNet200_vd
    Args:
D
dongshuilong 已提交
525 526 527
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
528 529 530
    Returns:
        model: nn.Layer. Specific `ResNet200_vd` model depends on args.
    """
D
dongshuilong 已提交
531 532
    model = ResNet(config=NET_CONFIG["200"], version="vd", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld)
C
cuicheng01 已提交
533
    return model