hrnet.py 16.6 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer

__all__ = [
    "HRNet_W18_C",
    "HRNet_W30_C",
    "HRNet_W32_C",
    "HRNet_W40_C",
    "HRNet_W44_C",
    "HRNet_W48_C",
    "HRNet_W60_C",
    "HRNet_W64_C",
    "SE_HRNet_W18_C",
    "SE_HRNet_W30_C",
    "SE_HRNet_W32_C",
    "SE_HRNet_W40_C",
    "SE_HRNet_W44_C",
    "SE_HRNet_W48_C",
    "SE_HRNet_W60_C",
    "SE_HRNet_W64_C",
]


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
57
                 act="relu"):
W
weishengyu 已提交
58 59
        super(ConvBNLayer, self).__init__()

W
add nn  
weishengyu 已提交
60
        self._conv = nn.Conv2D(
W
weishengyu 已提交
61 62 63 64 65 66 67
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            bias_attr=False)
W
add nn  
weishengyu 已提交
68
        self._batch_norm = nn.BatchNorm(
W
weishengyu 已提交
69
            num_filters,
W
weishengyu 已提交
70
            act=act)
W
weishengyu 已提交
71

W
weishengyu 已提交
72 73
    def forward(self, x, res_dict=None):
        y = self._conv(x)
W
weishengyu 已提交
74 75 76 77 78 79 80 81 82 83
        y = self._batch_norm(y)
        return y


class BottleneckBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
W
weishengyu 已提交
84
                 downsample=False):
W
weishengyu 已提交
85 86 87 88 89 90 91 92 93
        super(BottleneckBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
W
weishengyu 已提交
94
            act="relu")
W
weishengyu 已提交
95 96 97 98 99
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
W
weishengyu 已提交
100
            act="relu")
W
weishengyu 已提交
101 102 103 104
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
W
weishengyu 已提交
105
            act=None)
W
weishengyu 已提交
106 107 108 109 110 111

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
W
weishengyu 已提交
112
                act=None)
W
weishengyu 已提交
113 114 115 116 117

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
W
weishengyu 已提交
118
                reduction_ratio=16)
W
weishengyu 已提交
119

W
weishengyu 已提交
120 121 122
    def forward(self, x, res_dict=None):
        residual = x
        conv1 = self.conv1(x)
W
weishengyu 已提交
123 124 125 126
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
W
weishengyu 已提交
127
            residual = self.conv_down(x)
W
weishengyu 已提交
128 129 130 131 132 133 134 135 136

        if self.has_se:
            conv3 = self.se(conv3)

        y = paddle.add(x=residual, y=conv3)
        y = F.relu(y)
        return y


W
dbg  
weishengyu 已提交
137
class BasicBlock(nn.Layer):
W
weishengyu 已提交
138 139 140
    def __init__(self,
                 num_channels,
                 num_filters,
W
weishengyu 已提交
141
                 has_se=False):
W
weishengyu 已提交
142 143 144 145 146 147 148 149
        super(BasicBlock, self).__init__()

        self.has_se = has_se

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
W
dbg  
weishengyu 已提交
150
            stride=1,
W
dbg  
weishengyu 已提交
151
            act="relu")
W
weishengyu 已提交
152 153 154 155 156
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
W
dbg  
weishengyu 已提交
157
            act=None)
W
weishengyu 已提交
158 159 160 161 162

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
W
weishengyu 已提交
163
                reduction_ratio=16)
W
weishengyu 已提交
164

W
dbg  
weishengyu 已提交
165
    def forward(self, input):
W
weishengyu 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.has_se:
            conv2 = self.se(conv2)

        y = paddle.add(x=residual, y=conv2)
        y = F.relu(y)
        return y


class SELayer(TheseusLayer):
W
weishengyu 已提交
179
    def __init__(self, num_channels, num_filters, reduction_ratio):
W
weishengyu 已提交
180 181 182 183 184 185 186 187
        super(SELayer, self).__init__()

        self.pool2d_gap = AdaptiveAvgPool2D(1)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
W
add nn  
weishengyu 已提交
188
        self.squeeze = nn.Linear(
W
weishengyu 已提交
189 190 191
            num_channels,
            med_ch,
            weight_attr=ParamAttr(
W
weishengyu 已提交
192
                initializer=Uniform(-stdv, stdv)))
W
weishengyu 已提交
193 194

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
W
add nn  
weishengyu 已提交
195
        self.excitation = nn.Linear(
W
weishengyu 已提交
196 197 198
            med_ch,
            num_filters,
            weight_attr=ParamAttr(
W
weishengyu 已提交
199
                initializer=Uniform(-stdv, stdv)))
W
weishengyu 已提交
200

W
weishengyu 已提交
201
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        pool = self.pool2d_gap(input)
        pool = paddle.squeeze(pool, axis=[2, 3])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.unsqueeze(excitation, axis=[2, 3])
        out = input * excitation
        return out


class Stage(TheseusLayer):
    def __init__(self,
                 num_modules,
                 num_filters,
                 has_se=False,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules

W
dbg  
weishengyu 已提交
223
        self.stage_func_list = nn.LayerList()
W
weishengyu 已提交
224
        for i in range(num_modules):
W
weishengyu 已提交
225 226 227 228 229
            self.stage_func_list.append(
                HighResolutionModule(
                    num_filters=num_filters,
                    has_se=has_se,
                    name=name + '_' + str(i + 1)))
W
weishengyu 已提交
230

W
weishengyu 已提交
231
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


class HighResolutionModule(TheseusLayer):
    def __init__(self,
                 num_filters,
                 has_se=False,
                 name=None):
        super(HighResolutionModule, self).__init__()

W
weishengyu 已提交
245
        self.basic_block_list = nn.LayerList()
W
dbg  
weishengyu 已提交
246 247

        for i in range(len(num_filters)):
W
weishengyu 已提交
248 249
            self.basic_block_list.append(
                nn.Sequential(*[
W
dbg  
weishengyu 已提交
250
                    BasicBlock(
W
weishengyu 已提交
251
                        num_channels=num_filters[i],
W
dbg  
weishengyu 已提交
252
                        num_filters=num_filters[i],
W
weishengyu 已提交
253
                        has_se=has_se) for j in range(4)]))
W
weishengyu 已提交
254 255 256 257 258 259

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            name=name)

W
weishengyu 已提交
260
    def forward(self, input, res_dict=None):
W
dbg  
weishengyu 已提交
261 262 263 264 265 266 267 268
        outs = []
        for idx, input in enumerate(input):
            conv = input
            basic_block_list = self.basic_block_list[idx]
            for basic_block_func in basic_block_list:
                conv = basic_block_func(conv)
            outs.append(conv)
        out = self.fuse_func(outs)
W
weishengyu 已提交
269 270 271 272 273 274 275 276 277 278
        return out


class FuseLayers(TheseusLayer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 name=None):
        super(FuseLayers, self).__init__()

W
weishengyu 已提交
279
        self._actual_ch = len(in_channels)
W
weishengyu 已提交
280 281
        self._in_channels = in_channels

W
weishengyu 已提交
282 283
        self.residual_func_list = nn.LayerList()
        for i in range(len(in_channels)):
W
weishengyu 已提交
284 285
            for j in range(len(in_channels)):
                if j > i:
W
weishengyu 已提交
286
                    self.residual_func_list.append(
W
weishengyu 已提交
287 288 289 290 291
                        ConvBNLayer(
                            num_channels=in_channels[j],
                            num_filters=out_channels[i],
                            filter_size=1,
                            stride=1,
W
weishengyu 已提交
292
                            act=None))
W
weishengyu 已提交
293 294 295 296
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
W
weishengyu 已提交
297
                            self.residual_func_list.append(
W
weishengyu 已提交
298 299 300 301 302
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[i],
                                    filter_size=3,
                                    stride=2,
W
weishengyu 已提交
303
                                    act=None))
W
weishengyu 已提交
304 305
                            pre_num_filters = out_channels[i]
                        else:
W
weishengyu 已提交
306
                            self.residual_func_list.append(
W
weishengyu 已提交
307 308 309 310 311
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[j],
                                    filter_size=3,
                                    stride=2,
W
weishengyu 已提交
312
                                    act="relu"))
W
weishengyu 已提交
313 314
                            pre_num_filters = out_channels[j]

W
weishengyu 已提交
315
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
316 317
        outs = []
        residual_func_idx = 0
W
weishengyu 已提交
318
        for i in range(len(self._in_channels)):
W
weishengyu 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
            residual = input[i]
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1

                    y = F.upsample(y, scale_factor=2**(j - i), mode="nearest")
                    residual = paddle.add(x=residual, y=y)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

                    residual = paddle.add(x=residual, y=y)

            residual = F.relu(residual)
            outs.append(residual)

        return outs


class LastClsOut(TheseusLayer):
    def __init__(self,
                 num_channel_list,
                 has_se,
                 num_filters_list=[32, 64, 128, 256],
                 name=None):
        super(LastClsOut, self).__init__()

W
weishengyu 已提交
349
        self.func_list = nn.LayerList()
W
weishengyu 已提交
350
        for idx in range(len(num_channel_list)):
W
weishengyu 已提交
351
            self.func_list.append(
W
weishengyu 已提交
352 353 354 355
                BottleneckBlock(
                    num_channels=num_channel_list[idx],
                    num_filters=num_filters_list[idx],
                    has_se=has_se,
W
weishengyu 已提交
356
                    downsample=True))
W
weishengyu 已提交
357

W
weishengyu 已提交
358
    def forward(self, inputs, res_dict=None):
W
weishengyu 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        outs = []
        for idx, input in enumerate(inputs):
            out = self.func_list[idx](input)
            outs.append(out)
        return outs


class HRNet(TheseusLayer):
    def __init__(self, width=18, has_se=False, class_dim=1000):
        super(HRNet, self).__init__()

        self.width = width
        self.has_se = has_se
        self.channels = {
            18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
            30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
            32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
            40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
            44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
            48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
            60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
            64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
        }
        self._class_dim = class_dim

        channels_2, channels_3, channels_4 = self.channels[width]

        self.conv_layer1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=3,
            stride=2,
W
weishengyu 已提交
391
            act='relu')
W
weishengyu 已提交
392 393 394 395 396 397

        self.conv_layer1_2 = ConvBNLayer(
            num_channels=64,
            num_filters=64,
            filter_size=3,
            stride=2,
W
weishengyu 已提交
398
            act='relu')
W
weishengyu 已提交
399

W
weishengyu 已提交
400 401
        self.layer1 = self.bottleneck_blocks = nn.Sequential(*[
            BottleneckBlock(
W
weishengyu 已提交
402 403 404 405
                num_channels=64 if i == 0 else 256,
                num_filters=64,
                has_se=has_se,
                stride=1,
W
weishengyu 已提交
406
                downsample=True if i == 0 else False)
W
weishengyu 已提交
407 408
            for i in range(4)
        ])
W
weishengyu 已提交
409

W
dbg  
weishengyu 已提交
410
        self.tr1_1 = ConvBNLayer(
W
weishengyu 已提交
411 412
            num_channels=256,
            num_filters=width,
W
dbg  
weishengyu 已提交
413 414
            filter_size=3)
        self.tr1_2 = ConvBNLayer(
W
dbg  
weishengyu 已提交
415
            num_channels=256,
W
weishengyu 已提交
416
            num_filters=width * 2,
W
dbg  
weishengyu 已提交
417 418 419
            filter_size=3,
            stride=2
        )
W
weishengyu 已提交
420 421

        self.st2 = Stage(
W
dbg  
weishengyu 已提交
422
            num_modules=1,
W
weishengyu 已提交
423 424 425 426
            num_filters=channels_2,
            has_se=self.has_se,
            name="st2")

W
dbg  
weishengyu 已提交
427
        self.tr2 = ConvBNLayer(
W
weishengyu 已提交
428 429
            num_channels=width * 2,
            num_filters=width * 4,
W
dbg  
weishengyu 已提交
430 431 432
            filter_size=3,
            stride=2
        )
W
weishengyu 已提交
433
        self.st3 = Stage(
W
dbg  
weishengyu 已提交
434
            num_modules=4,
W
weishengyu 已提交
435 436 437 438
            num_filters=channels_3,
            has_se=self.has_se,
            name="st3")

W
dbg  
weishengyu 已提交
439
        self.tr3 = ConvBNLayer(
W
weishengyu 已提交
440 441
            num_channels=width * 4,
            num_filters=width * 8,
W
dbg  
weishengyu 已提交
442 443 444
            filter_size=3,
            stride=2
        )
W
weishengyu 已提交
445

W
weishengyu 已提交
446
        self.st4 = Stage(
W
dbg  
weishengyu 已提交
447
            num_modules=3,
W
weishengyu 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
            num_filters=channels_4,
            has_se=self.has_se,
            name="st4")

        # classification
        num_filters_list = [32, 64, 128, 256]
        self.last_cls = LastClsOut(
            num_channel_list=channels_4,
            has_se=self.has_se,
            num_filters_list=num_filters_list,
            name="cls_head", )

        last_num_filters = [256, 512, 1024]
W
weishengyu 已提交
461
        self.cls_head_conv_list = nn.LayerList()
W
weishengyu 已提交
462 463 464 465 466 467
        for idx in range(3):
            self.cls_head_conv_list.append(
                    ConvBNLayer(
                        num_channels=num_filters_list[idx] * 4,
                        num_filters=last_num_filters[idx],
                        filter_size=3,
W
weishengyu 已提交
468
                        stride=2))
W
weishengyu 已提交
469 470 471 472 473

        self.conv_last = ConvBNLayer(
            num_channels=1024,
            num_filters=2048,
            filter_size=1,
W
weishengyu 已提交
474
            stride=1)
W
weishengyu 已提交
475 476 477 478 479

        self.pool2d_avg = AdaptiveAvgPool2D(1)

        stdv = 1.0 / math.sqrt(2048 * 1.0)

W
add nn  
weishengyu 已提交
480
        self.out = nn.Linear(
W
weishengyu 已提交
481 482 483
            2048,
            class_dim,
            weight_attr=ParamAttr(
W
weishengyu 已提交
484
                initializer=Uniform(-stdv, stdv)))
W
weishengyu 已提交
485

W
weishengyu 已提交
486
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
487 488 489
        conv1 = self.conv_layer1_1(input)
        conv2 = self.conv_layer1_2(conv1)

W
weishengyu 已提交
490
        la1 = self.layer1(conv2)
W
weishengyu 已提交
491

W
dbg  
weishengyu 已提交
492 493
        tr1_1 = self.tr1_1(la1)
        tr1_2 = self.tr1_2(la1)
W
dbg  
weishengyu 已提交
494
        st2 = self.st2([tr1_1, tr1_2])
W
weishengyu 已提交
495

W
dbg  
weishengyu 已提交
496 497 498
        tr2 = self.tr2(st2[-1])
        st2.append(tr2)
        st3 = self.st3(st2)
W
weishengyu 已提交
499

W
dbg  
weishengyu 已提交
500 501 502
        tr3 = self.tr3(st3[-1])
        st3.append(tr3)
        st4 = self.st4(st3)
W
weishengyu 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

        last_cls = self.last_cls(st4)

        y = last_cls[0]
        for idx in range(3):
            y = paddle.add(last_cls[idx + 1], self.cls_head_conv_list[idx](y))

        y = self.conv_last(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, y.shape[1]])
        y = self.out(y)
        return y


def HRNet_W18_C(**args):
    model = HRNet(width=18, **args)
    return model


def HRNet_W30_C(**args):
    model = HRNet(width=30, **args)
    return model


def HRNet_W32_C(**args):
    model = HRNet(width=32, **args)
    return model


def HRNet_W40_C(**args):
    model = HRNet(width=40, **args)
    return model


def HRNet_W44_C(**args):
    model = HRNet(width=44, **args)
    return model


def HRNet_W48_C(**args):
    model = HRNet(width=48, **args)
    return model


def HRNet_W60_C(**args):
    model = HRNet(width=60, **args)
    return model


def HRNet_W64_C(**args):
    model = HRNet(width=64, **args)
    return model


def SE_HRNet_W18_C(**args):
    model = HRNet(width=18, has_se=True, **args)
    return model


def SE_HRNet_W30_C(**args):
    model = HRNet(width=30, has_se=True, **args)
    return model


def SE_HRNet_W32_C(**args):
    model = HRNet(width=32, has_se=True, **args)
    return model


def SE_HRNet_W40_C(**args):
    model = HRNet(width=40, has_se=True, **args)
    return model


def SE_HRNet_W44_C(**args):
    model = HRNet(width=44, has_se=True, **args)
    return model


def SE_HRNet_W48_C(**args):
    model = HRNet(width=48, has_se=True, **args)
    return model


def SE_HRNet_W60_C(**args):
    model = HRNet(width=60, has_se=True, **args)
    return model


def SE_HRNet_W64_C(**args):
    model = HRNet(width=64, has_se=True, **args)
    return model