hrnet.py 17.9 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer

__all__ = [
    "HRNet_W18_C",
    "HRNet_W30_C",
    "HRNet_W32_C",
    "HRNet_W40_C",
    "HRNet_W44_C",
    "HRNet_W48_C",
    "HRNet_W60_C",
    "HRNet_W64_C",
    "SE_HRNet_W18_C",
    "SE_HRNet_W30_C",
    "SE_HRNet_W32_C",
    "SE_HRNet_W40_C",
    "SE_HRNet_W44_C",
    "SE_HRNet_W48_C",
    "SE_HRNet_W60_C",
    "SE_HRNet_W64_C",
]


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
57
                 act="relu"):
W
weishengyu 已提交
58 59
        super(ConvBNLayer, self).__init__()

W
add nn  
weishengyu 已提交
60
        self._conv = nn.Conv2D(
W
weishengyu 已提交
61 62 63 64 65 66 67
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            bias_attr=False)
W
add nn  
weishengyu 已提交
68
        self._batch_norm = nn.BatchNorm(
W
weishengyu 已提交
69
            num_filters,
W
weishengyu 已提交
70
            act=act)
W
weishengyu 已提交
71

W
weishengyu 已提交
72 73
    def forward(self, x, res_dict=None):
        y = self._conv(x)
W
weishengyu 已提交
74 75 76 77 78 79 80 81 82 83
        y = self._batch_norm(y)
        return y


class BottleneckBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
W
weishengyu 已提交
84
                 downsample=False):
W
weishengyu 已提交
85 86 87 88 89 90 91 92 93
        super(BottleneckBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
W
weishengyu 已提交
94
            act="relu")
W
weishengyu 已提交
95 96 97 98 99
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
W
weishengyu 已提交
100
            act="relu")
W
weishengyu 已提交
101 102 103 104
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
W
weishengyu 已提交
105
            act=None)
W
weishengyu 已提交
106 107 108 109 110 111

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
W
weishengyu 已提交
112
                act=None)
W
weishengyu 已提交
113 114 115 116 117

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
W
weishengyu 已提交
118
                reduction_ratio=16)
W
weishengyu 已提交
119

W
weishengyu 已提交
120 121 122
    def forward(self, x, res_dict=None):
        residual = x
        conv1 = self.conv1(x)
W
weishengyu 已提交
123 124 125 126
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
W
weishengyu 已提交
127
            residual = self.conv_down(x)
W
weishengyu 已提交
128 129 130 131 132 133 134 135 136

        if self.has_se:
            conv3 = self.se(conv3)

        y = paddle.add(x=residual, y=conv3)
        y = F.relu(y)
        return y


W
dbg  
weishengyu 已提交
137
class BasicBlock(nn.Layer):
W
weishengyu 已提交
138 139 140
    def __init__(self,
                 num_channels,
                 num_filters,
W
weishengyu 已提交
141
                 has_se=False):
W
weishengyu 已提交
142 143 144 145 146 147 148 149
        super(BasicBlock, self).__init__()

        self.has_se = has_se

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
W
dbg  
weishengyu 已提交
150
            stride=1,
W
dbg  
weishengyu 已提交
151
            act="relu")
W
weishengyu 已提交
152 153 154 155 156
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
W
dbg  
weishengyu 已提交
157
            act=None)
W
weishengyu 已提交
158 159 160 161 162

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
W
weishengyu 已提交
163
                reduction_ratio=16)
W
weishengyu 已提交
164

W
dbg  
weishengyu 已提交
165
    def forward(self, input):
W
weishengyu 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.has_se:
            conv2 = self.se(conv2)

        y = paddle.add(x=residual, y=conv2)
        y = F.relu(y)
        return y


class SELayer(TheseusLayer):
W
weishengyu 已提交
179
    def __init__(self, num_channels, num_filters, reduction_ratio):
W
weishengyu 已提交
180 181 182 183 184 185 186 187
        super(SELayer, self).__init__()

        self.pool2d_gap = AdaptiveAvgPool2D(1)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
W
add nn  
weishengyu 已提交
188
        self.squeeze = nn.Linear(
W
weishengyu 已提交
189 190 191
            num_channels,
            med_ch,
            weight_attr=ParamAttr(
W
weishengyu 已提交
192
                initializer=Uniform(-stdv, stdv)))
W
weishengyu 已提交
193 194

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
W
add nn  
weishengyu 已提交
195
        self.excitation = nn.Linear(
W
weishengyu 已提交
196 197 198
            med_ch,
            num_filters,
            weight_attr=ParamAttr(
W
weishengyu 已提交
199
                initializer=Uniform(-stdv, stdv)))
W
weishengyu 已提交
200

W
weishengyu 已提交
201
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        pool = self.pool2d_gap(input)
        pool = paddle.squeeze(pool, axis=[2, 3])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.unsqueeze(excitation, axis=[2, 3])
        out = input * excitation
        return out


class Stage(TheseusLayer):
    def __init__(self,
                 num_modules,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules

W
dbg  
weishengyu 已提交
224
        self.stage_func_list = nn.LayerList()
W
weishengyu 已提交
225 226
        for i in range(num_modules):
            if i == num_modules - 1 and not multi_scale_output:
W
dbg  
weishengyu 已提交
227
                self.stage_func_list.append(
W
weishengyu 已提交
228 229 230 231 232 233
                    HighResolutionModule(
                        num_filters=num_filters,
                        has_se=has_se,
                        multi_scale_output=False,
                        name=name + '_' + str(i + 1)))
            else:
W
dbg  
weishengyu 已提交
234
                self.stage_func_list.append(
W
weishengyu 已提交
235 236 237 238 239
                    HighResolutionModule(
                        num_filters=num_filters,
                        has_se=has_se,
                        name=name + '_' + str(i + 1)))

W
weishengyu 已提交
240
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


class HighResolutionModule(TheseusLayer):
    def __init__(self,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(HighResolutionModule, self).__init__()

W
dbg  
weishengyu 已提交
255 256 257 258 259
        self.basic_block_list = []

        for i in range(len(num_filters)):
            self.basic_block_list.append([])
            for j in range(4):
W
dbg  
weishengyu 已提交
260
                in_ch = num_filters[i]
W
dbg  
weishengyu 已提交
261 262 263 264 265
                basic_block_func = self.add_sublayer(
                    "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
                    BasicBlock(
                        num_channels=in_ch,
                        num_filters=num_filters[i],
W
weishengyu 已提交
266
                        has_se=has_se))
W
dbg  
weishengyu 已提交
267
                self.basic_block_list[i].append(basic_block_func)
W
weishengyu 已提交
268 269 270 271 272 273 274

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            multi_scale_output=multi_scale_output,
            name=name)

W
weishengyu 已提交
275
    def forward(self, input, res_dict=None):
W
dbg  
weishengyu 已提交
276 277 278 279 280 281 282 283
        outs = []
        for idx, input in enumerate(input):
            conv = input
            basic_block_list = self.basic_block_list[idx]
            for basic_block_func in basic_block_list:
                conv = basic_block_func(conv)
            outs.append(conv)
        out = self.fuse_func(outs)
W
weishengyu 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        return out


class FuseLayers(TheseusLayer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 multi_scale_output=True,
                 name=None):
        super(FuseLayers, self).__init__()

        self._actual_ch = len(in_channels) if multi_scale_output else 1
        self._in_channels = in_channels

        self.residual_func_list = []
        for i in range(self._actual_ch):
            for j in range(len(in_channels)):
                residual_func = None
                if j > i:
                    residual_func = self.add_sublayer(
                        "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
                        ConvBNLayer(
                            num_channels=in_channels[j],
                            num_filters=out_channels[i],
                            filter_size=1,
                            stride=1,
W
weishengyu 已提交
310
                            act=None))
W
weishengyu 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323
                    self.residual_func_list.append(residual_func)
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[i],
                                    filter_size=3,
                                    stride=2,
W
weishengyu 已提交
324
                                    act=None))
W
weishengyu 已提交
325 326 327 328 329 330 331 332 333 334
                            pre_num_filters = out_channels[i]
                        else:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[j],
                                    filter_size=3,
                                    stride=2,
W
weishengyu 已提交
335
                                    act="relu"))
W
weishengyu 已提交
336 337 338
                            pre_num_filters = out_channels[j]
                        self.residual_func_list.append(residual_func)

W
weishengyu 已提交
339
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        outs = []
        residual_func_idx = 0
        for i in range(self._actual_ch):
            residual = input[i]
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1

                    y = F.upsample(y, scale_factor=2**(j - i), mode="nearest")
                    residual = paddle.add(x=residual, y=y)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

                    residual = paddle.add(x=residual, y=y)

            residual = F.relu(residual)
            outs.append(residual)

        return outs


class LastClsOut(TheseusLayer):
    def __init__(self,
                 num_channel_list,
                 has_se,
                 num_filters_list=[32, 64, 128, 256],
                 name=None):
        super(LastClsOut, self).__init__()

        self.func_list = []
        for idx in range(len(num_channel_list)):
            func = self.add_sublayer(
                "conv_{}_conv_{}".format(name, idx + 1),
                BottleneckBlock(
                    num_channels=num_channel_list[idx],
                    num_filters=num_filters_list[idx],
                    has_se=has_se,
W
weishengyu 已提交
381
                    downsample=True))
W
weishengyu 已提交
382 383
            self.func_list.append(func)

W
weishengyu 已提交
384
    def forward(self, inputs, res_dict=None):
W
weishengyu 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        outs = []
        for idx, input in enumerate(inputs):
            out = self.func_list[idx](input)
            outs.append(out)
        return outs


class HRNet(TheseusLayer):
    def __init__(self, width=18, has_se=False, class_dim=1000):
        super(HRNet, self).__init__()

        self.width = width
        self.has_se = has_se
        self.channels = {
            18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
            30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
            32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
            40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
            44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
            48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
            60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
            64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
        }
        self._class_dim = class_dim

        channels_2, channels_3, channels_4 = self.channels[width]

        self.conv_layer1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=3,
            stride=2,
W
weishengyu 已提交
417
            act='relu')
W
weishengyu 已提交
418 419 420 421 422 423

        self.conv_layer1_2 = ConvBNLayer(
            num_channels=64,
            num_filters=64,
            filter_size=3,
            stride=2,
W
weishengyu 已提交
424
            act='relu')
W
weishengyu 已提交
425

W
weishengyu 已提交
426
        self.layer1 = self.bottleneck_blocks = nn.Sequential(*[BottleneckBlock(
W
weishengyu 已提交
427 428 429 430
                num_channels=64 if i == 0 else 256,
                num_filters=64,
                has_se=has_se,
                stride=1,
W
weishengyu 已提交
431
                downsample=True if i == 0 else False)
W
weishengyu 已提交
432 433
            for i in range(4)
        ])
W
weishengyu 已提交
434

W
dbg  
weishengyu 已提交
435
        self.tr1_1 = ConvBNLayer(
W
weishengyu 已提交
436 437
            num_channels=256,
            num_filters=width,
W
dbg  
weishengyu 已提交
438 439
            filter_size=3)
        self.tr1_2 = ConvBNLayer(
W
dbg  
weishengyu 已提交
440
            num_channels=256,
W
weishengyu 已提交
441
            num_filters=width * 2,
W
dbg  
weishengyu 已提交
442 443 444
            filter_size=3,
            stride=2
        )
W
weishengyu 已提交
445 446

        self.st2 = Stage(
W
dbg  
weishengyu 已提交
447
            num_modules=1,
W
weishengyu 已提交
448 449 450 451
            num_filters=channels_2,
            has_se=self.has_se,
            name="st2")

W
dbg  
weishengyu 已提交
452
        self.tr2 = ConvBNLayer(
W
weishengyu 已提交
453 454
            num_channels=width * 2,
            num_filters=width * 4,
W
dbg  
weishengyu 已提交
455 456 457
            filter_size=3,
            stride=2
        )
W
weishengyu 已提交
458
        self.st3 = Stage(
W
dbg  
weishengyu 已提交
459
            num_modules=4,
W
weishengyu 已提交
460 461 462 463
            num_filters=channels_3,
            has_se=self.has_se,
            name="st3")

W
dbg  
weishengyu 已提交
464
        self.tr3 = ConvBNLayer(
W
weishengyu 已提交
465 466
            num_channels=width * 4,
            num_filters=width * 8,
W
dbg  
weishengyu 已提交
467 468 469
            filter_size=3,
            stride=2
        )
W
weishengyu 已提交
470

W
weishengyu 已提交
471
        self.st4 = Stage(
W
dbg  
weishengyu 已提交
472
            num_modules=3,
W
weishengyu 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485
            num_filters=channels_4,
            has_se=self.has_se,
            name="st4")

        # classification
        num_filters_list = [32, 64, 128, 256]
        self.last_cls = LastClsOut(
            num_channel_list=channels_4,
            has_se=self.has_se,
            num_filters_list=num_filters_list,
            name="cls_head", )

        last_num_filters = [256, 512, 1024]
W
weishengyu 已提交
486
        self.cls_head_conv_list = nn.LayerList()
W
weishengyu 已提交
487 488 489 490 491 492
        for idx in range(3):
            self.cls_head_conv_list.append(
                    ConvBNLayer(
                        num_channels=num_filters_list[idx] * 4,
                        num_filters=last_num_filters[idx],
                        filter_size=3,
W
weishengyu 已提交
493
                        stride=2))
W
weishengyu 已提交
494 495 496 497 498

        self.conv_last = ConvBNLayer(
            num_channels=1024,
            num_filters=2048,
            filter_size=1,
W
weishengyu 已提交
499
            stride=1)
W
weishengyu 已提交
500 501 502 503 504

        self.pool2d_avg = AdaptiveAvgPool2D(1)

        stdv = 1.0 / math.sqrt(2048 * 1.0)

W
add nn  
weishengyu 已提交
505
        self.out = nn.Linear(
W
weishengyu 已提交
506 507 508
            2048,
            class_dim,
            weight_attr=ParamAttr(
W
weishengyu 已提交
509
                initializer=Uniform(-stdv, stdv)))
W
weishengyu 已提交
510

W
weishengyu 已提交
511
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
512 513 514
        conv1 = self.conv_layer1_1(input)
        conv2 = self.conv_layer1_2(conv1)

W
weishengyu 已提交
515
        la1 = self.layer1(conv2)
W
weishengyu 已提交
516

W
dbg  
weishengyu 已提交
517 518
        tr1_1 = self.tr1_1(la1)
        tr1_2 = self.tr1_2(la1)
W
dbg  
weishengyu 已提交
519
        st2 = self.st2([tr1_1, tr1_2])
W
weishengyu 已提交
520

W
dbg  
weishengyu 已提交
521 522 523
        tr2 = self.tr2(st2[-1])
        st2.append(tr2)
        st3 = self.st3(st2)
W
weishengyu 已提交
524

W
dbg  
weishengyu 已提交
525 526 527
        tr3 = self.tr3(st3[-1])
        st3.append(tr3)
        st4 = self.st4(st3)
W
weishengyu 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

        last_cls = self.last_cls(st4)

        y = last_cls[0]
        for idx in range(3):
            y = paddle.add(last_cls[idx + 1], self.cls_head_conv_list[idx](y))

        y = self.conv_last(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, y.shape[1]])
        y = self.out(y)
        return y


def HRNet_W18_C(**args):
    model = HRNet(width=18, **args)
    return model


def HRNet_W30_C(**args):
    model = HRNet(width=30, **args)
    return model


def HRNet_W32_C(**args):
    model = HRNet(width=32, **args)
    return model


def HRNet_W40_C(**args):
    model = HRNet(width=40, **args)
    return model


def HRNet_W44_C(**args):
    model = HRNet(width=44, **args)
    return model


def HRNet_W48_C(**args):
    model = HRNet(width=48, **args)
    return model


def HRNet_W60_C(**args):
    model = HRNet(width=60, **args)
    return model


def HRNet_W64_C(**args):
    model = HRNet(width=64, **args)
    return model


def SE_HRNet_W18_C(**args):
    model = HRNet(width=18, has_se=True, **args)
    return model


def SE_HRNet_W30_C(**args):
    model = HRNet(width=30, has_se=True, **args)
    return model


def SE_HRNet_W32_C(**args):
    model = HRNet(width=32, has_se=True, **args)
    return model


def SE_HRNet_W40_C(**args):
    model = HRNet(width=40, has_se=True, **args)
    return model


def SE_HRNet_W44_C(**args):
    model = HRNet(width=44, has_se=True, **args)
    return model


def SE_HRNet_W48_C(**args):
    model = HRNet(width=48, has_se=True, **args)
    return model


def SE_HRNet_W60_C(**args):
    model = HRNet(width=60, has_se=True, **args)
    return model


def SE_HRNet_W64_C(**args):
    model = HRNet(width=64, has_se=True, **args)
    return model