hrnet.py 19.1 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer

__all__ = [
    "HRNet_W18_C",
    "HRNet_W30_C",
    "HRNet_W32_C",
    "HRNet_W40_C",
    "HRNet_W44_C",
    "HRNet_W48_C",
    "HRNet_W60_C",
    "HRNet_W64_C",
    "SE_HRNet_W18_C",
    "SE_HRNet_W30_C",
    "SE_HRNet_W32_C",
    "SE_HRNet_W40_C",
    "SE_HRNet_W44_C",
    "SE_HRNet_W48_C",
    "SE_HRNet_W60_C",
    "SE_HRNet_W64_C",
]


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
57
                 act="relu"):
W
weishengyu 已提交
58 59
        super(ConvBNLayer, self).__init__()

W
add nn  
weishengyu 已提交
60
        self._conv = nn.Conv2D(
W
weishengyu 已提交
61 62 63 64 65 66 67
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            bias_attr=False)
W
add nn  
weishengyu 已提交
68
        self._batch_norm = nn.BatchNorm(
W
weishengyu 已提交
69
            num_filters,
W
weishengyu 已提交
70
            act=act)
W
weishengyu 已提交
71

W
weishengyu 已提交
72 73
    def forward(self, x, res_dict=None):
        y = self._conv(x)
W
weishengyu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        y = self._batch_norm(y)
        return y


class BottleneckBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
                 downsample=False,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
W
weishengyu 已提交
95
            act="relu")
W
weishengyu 已提交
96 97 98 99 100
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
W
weishengyu 已提交
101
            act="relu")
W
weishengyu 已提交
102 103 104 105
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
W
weishengyu 已提交
106
            act=None)
W
weishengyu 已提交
107 108 109 110 111 112

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
W
weishengyu 已提交
113
                act=None)
W
weishengyu 已提交
114 115 116 117 118 119 120 121

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
                reduction_ratio=16,
                name='fc' + name)

W
weishengyu 已提交
122 123 124
    def forward(self, x, res_dict=None):
        residual = x
        conv1 = self.conv1(x)
W
weishengyu 已提交
125 126 127 128
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
W
weishengyu 已提交
129
            residual = self.conv_down(x)
W
weishengyu 已提交
130 131 132 133 134 135 136 137 138

        if self.has_se:
            conv3 = self.se(conv3)

        y = paddle.add(x=residual, y=conv3)
        y = F.relu(y)
        return y


W
dbg  
weishengyu 已提交
139
class BasicBlock(nn.Layer):
W
weishengyu 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se=False,
                 name=None):
        super(BasicBlock, self).__init__()

        self.has_se = has_se

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
W
dbg  
weishengyu 已提交
153
            stride=1,
W
dbg  
weishengyu 已提交
154
            act="relu")
W
weishengyu 已提交
155 156 157 158 159
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
W
dbg  
weishengyu 已提交
160
            act=None)
W
weishengyu 已提交
161 162 163 164 165 166 167 168

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
                reduction_ratio=16,
                name='fc' + name)

W
dbg  
weishengyu 已提交
169
    def forward(self, input):
W
weishengyu 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.has_se:
            conv2 = self.se(conv2)

        y = paddle.add(x=residual, y=conv2)
        y = F.relu(y)
        return y


class SELayer(TheseusLayer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

        self.pool2d_gap = AdaptiveAvgPool2D(1)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
W
add nn  
weishengyu 已提交
192
        self.squeeze = nn.Linear(
W
weishengyu 已提交
193 194 195 196 197 198 199
            num_channels,
            med_ch,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
            bias_attr=ParamAttr(name=name + '_sqz_offset'))

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
W
add nn  
weishengyu 已提交
200
        self.excitation = nn.Linear(
W
weishengyu 已提交
201 202 203 204 205 206
            med_ch,
            num_filters,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
            bias_attr=ParamAttr(name=name + '_exc_offset'))

W
weishengyu 已提交
207
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        pool = self.pool2d_gap(input)
        pool = paddle.squeeze(pool, axis=[2, 3])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.unsqueeze(excitation, axis=[2, 3])
        out = input * excitation
        return out


class Stage(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_modules,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules

        self.stage_func_list = []
        for i in range(num_modules):
            if i == num_modules - 1 and not multi_scale_output:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        multi_scale_output=False,
                        name=name + '_' + str(i + 1)))
            else:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        name=name + '_' + str(i + 1)))

            self.stage_func_list.append(stage_func)

W
weishengyu 已提交
253
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


class HighResolutionModule(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(HighResolutionModule, self).__init__()

W
dbg  
weishengyu 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        self.basic_block_list = []

        for i in range(len(num_filters)):
            self.basic_block_list.append([])
            for j in range(4):
                in_ch = num_channels[i] if j == 0 else num_channels[i]
                basic_block_func = self.add_sublayer(
                    "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
                    BasicBlock(
                        num_channels=in_ch,
                        num_filters=num_filters[i],
                        has_se=has_se,
                        name=name + '_branch_layer_' + str(i + 1) + '_' +
                             str(j + 1)))
                self.basic_block_list[i].append(basic_block_func)
W
weishengyu 已提交
284 285 286 287 288 289 290

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            multi_scale_output=multi_scale_output,
            name=name)

W
weishengyu 已提交
291
    def forward(self, input, res_dict=None):
W
dbg  
weishengyu 已提交
292 293 294 295 296 297 298 299
        outs = []
        for idx, input in enumerate(input):
            conv = input
            basic_block_list = self.basic_block_list[idx]
            for basic_block_func in basic_block_list:
                conv = basic_block_func(conv)
            outs.append(conv)
        out = self.fuse_func(outs)
W
weishengyu 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        return out


class FuseLayers(TheseusLayer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 multi_scale_output=True,
                 name=None):
        super(FuseLayers, self).__init__()

        self._actual_ch = len(in_channels) if multi_scale_output else 1
        self._in_channels = in_channels

        self.residual_func_list = []
        for i in range(self._actual_ch):
            for j in range(len(in_channels)):
                residual_func = None
                if j > i:
                    residual_func = self.add_sublayer(
                        "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
                        ConvBNLayer(
                            num_channels=in_channels[j],
                            num_filters=out_channels[i],
                            filter_size=1,
                            stride=1,
W
weishengyu 已提交
326
                            act=None))
W
weishengyu 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339
                    self.residual_func_list.append(residual_func)
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[i],
                                    filter_size=3,
                                    stride=2,
W
weishengyu 已提交
340
                                    act=None))
W
weishengyu 已提交
341 342 343 344 345 346 347 348 349 350
                            pre_num_filters = out_channels[i]
                        else:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[j],
                                    filter_size=3,
                                    stride=2,
W
weishengyu 已提交
351
                                    act="relu"))
W
weishengyu 已提交
352 353 354
                            pre_num_filters = out_channels[j]
                        self.residual_func_list.append(residual_func)

W
weishengyu 已提交
355
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        outs = []
        residual_func_idx = 0
        for i in range(self._actual_ch):
            residual = input[i]
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1

                    y = F.upsample(y, scale_factor=2**(j - i), mode="nearest")
                    residual = paddle.add(x=residual, y=y)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

                    residual = paddle.add(x=residual, y=y)

            residual = F.relu(residual)
            outs.append(residual)

        return outs


class LastClsOut(TheseusLayer):
    def __init__(self,
                 num_channel_list,
                 has_se,
                 num_filters_list=[32, 64, 128, 256],
                 name=None):
        super(LastClsOut, self).__init__()

        self.func_list = []
        for idx in range(len(num_channel_list)):
            func = self.add_sublayer(
                "conv_{}_conv_{}".format(name, idx + 1),
                BottleneckBlock(
                    num_channels=num_channel_list[idx],
                    num_filters=num_filters_list[idx],
                    has_se=has_se,
                    downsample=True,
                    name=name + 'conv_' + str(idx + 1)))
            self.func_list.append(func)

W
weishengyu 已提交
401
    def forward(self, inputs, res_dict=None):
W
weishengyu 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
        outs = []
        for idx, input in enumerate(inputs):
            out = self.func_list[idx](input)
            outs.append(out)
        return outs


class HRNet(TheseusLayer):
    def __init__(self, width=18, has_se=False, class_dim=1000):
        super(HRNet, self).__init__()

        self.width = width
        self.has_se = has_se
        self.channels = {
            18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
            30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
            32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
            40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
            44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
            48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
            60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
            64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
        }
        self._class_dim = class_dim

        channels_2, channels_3, channels_4 = self.channels[width]
        num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3

        self.conv_layer1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=3,
            stride=2,
W
weishengyu 已提交
435
            act='relu')
W
weishengyu 已提交
436 437 438 439 440 441

        self.conv_layer1_2 = ConvBNLayer(
            num_channels=64,
            num_filters=64,
            filter_size=3,
            stride=2,
W
weishengyu 已提交
442
            act='relu')
W
weishengyu 已提交
443

W
weishengyu 已提交
444
        self.layer1 = self.bottleneck_blocks = nn.Sequential(*[BottleneckBlock(
W
weishengyu 已提交
445 446 447 448
                num_channels=64 if i == 0 else 256,
                num_filters=64,
                has_se=has_se,
                stride=1,
W
weishengyu 已提交
449
                downsample=True if i == 0 else False)
W
weishengyu 已提交
450 451
            for i in range(4)
        ])
W
weishengyu 已提交
452

W
dbg  
weishengyu 已提交
453
        self.tr1_1 = ConvBNLayer(
W
weishengyu 已提交
454 455
            num_channels=256,
            num_filters=width,
W
dbg  
weishengyu 已提交
456 457
            filter_size=3)
        self.tr1_2 = ConvBNLayer(
W
dbg  
weishengyu 已提交
458
            num_channels=256,
W
weishengyu 已提交
459
            num_filters=width * 2,
W
dbg  
weishengyu 已提交
460 461 462
            filter_size=3,
            stride=2
        )
W
weishengyu 已提交
463 464 465 466 467 468 469 470

        self.st2 = Stage(
            num_channels=channels_2,
            num_modules=num_modules_2,
            num_filters=channels_2,
            has_se=self.has_se,
            name="st2")

W
dbg  
weishengyu 已提交
471
        self.tr2 = ConvBNLayer(
W
weishengyu 已提交
472 473
            num_channels=width * 2,
            num_filters=width * 4,
W
dbg  
weishengyu 已提交
474 475 476
            filter_size=3,
            stride=2
        )
W
weishengyu 已提交
477 478 479 480 481 482 483
        self.st3 = Stage(
            num_channels=channels_3,
            num_modules=num_modules_3,
            num_filters=channels_3,
            has_se=self.has_se,
            name="st3")

W
dbg  
weishengyu 已提交
484
        self.tr3 = ConvBNLayer(
W
weishengyu 已提交
485 486
            num_channels=width * 4,
            num_filters=width * 8,
W
dbg  
weishengyu 已提交
487 488 489
            filter_size=3,
            stride=2
        )
W
weishengyu 已提交
490

W
weishengyu 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        self.st4 = Stage(
            num_channels=channels_4,
            num_modules=num_modules_4,
            num_filters=channels_4,
            has_se=self.has_se,
            name="st4")

        # classification
        num_filters_list = [32, 64, 128, 256]
        self.last_cls = LastClsOut(
            num_channel_list=channels_4,
            has_se=self.has_se,
            num_filters_list=num_filters_list,
            name="cls_head", )

        last_num_filters = [256, 512, 1024]
        self.cls_head_conv_list = []
        for idx in range(3):
            self.cls_head_conv_list.append(
                self.add_sublayer(
                    "cls_head_add{}".format(idx + 1),
                    ConvBNLayer(
                        num_channels=num_filters_list[idx] * 4,
                        num_filters=last_num_filters[idx],
                        filter_size=3,
W
weishengyu 已提交
516
                        stride=2)))
W
weishengyu 已提交
517 518 519 520 521

        self.conv_last = ConvBNLayer(
            num_channels=1024,
            num_filters=2048,
            filter_size=1,
W
weishengyu 已提交
522
            stride=1)
W
weishengyu 已提交
523 524 525 526 527

        self.pool2d_avg = AdaptiveAvgPool2D(1)

        stdv = 1.0 / math.sqrt(2048 * 1.0)

W
add nn  
weishengyu 已提交
528
        self.out = nn.Linear(
W
weishengyu 已提交
529 530 531 532 533 534
            2048,
            class_dim,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

W
weishengyu 已提交
535
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
536 537 538
        conv1 = self.conv_layer1_1(input)
        conv2 = self.conv_layer1_2(conv1)

W
weishengyu 已提交
539
        la1 = self.layer1(conv2)
W
weishengyu 已提交
540

W
dbg  
weishengyu 已提交
541 542
        tr1_1 = self.tr1_1(la1)
        tr1_2 = self.tr1_2(la1)
W
dbg  
weishengyu 已提交
543
        st2 = self.st2([tr1_1, tr1_2])
W
weishengyu 已提交
544

W
dbg  
weishengyu 已提交
545 546 547
        tr2 = self.tr2(st2[-1])
        st2.append(tr2)
        st3 = self.st3(st2)
W
weishengyu 已提交
548

W
dbg  
weishengyu 已提交
549 550 551
        tr3 = self.tr3(st3[-1])
        st3.append(tr3)
        st4 = self.st4(st3)
W
weishengyu 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

        last_cls = self.last_cls(st4)

        y = last_cls[0]
        for idx in range(3):
            y = paddle.add(last_cls[idx + 1], self.cls_head_conv_list[idx](y))

        y = self.conv_last(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, y.shape[1]])
        y = self.out(y)
        return y


def HRNet_W18_C(**args):
    model = HRNet(width=18, **args)
    return model


def HRNet_W30_C(**args):
    model = HRNet(width=30, **args)
    return model


def HRNet_W32_C(**args):
    model = HRNet(width=32, **args)
    return model


def HRNet_W40_C(**args):
    model = HRNet(width=40, **args)
    return model


def HRNet_W44_C(**args):
    model = HRNet(width=44, **args)
    return model


def HRNet_W48_C(**args):
    model = HRNet(width=48, **args)
    return model


def HRNet_W60_C(**args):
    model = HRNet(width=60, **args)
    return model


def HRNet_W64_C(**args):
    model = HRNet(width=64, **args)
    return model


def SE_HRNet_W18_C(**args):
    model = HRNet(width=18, has_se=True, **args)
    return model


def SE_HRNet_W30_C(**args):
    model = HRNet(width=30, has_se=True, **args)
    return model


def SE_HRNet_W32_C(**args):
    model = HRNet(width=32, has_se=True, **args)
    return model


def SE_HRNet_W40_C(**args):
    model = HRNet(width=40, has_se=True, **args)
    return model


def SE_HRNet_W44_C(**args):
    model = HRNet(width=44, has_se=True, **args)
    return model


def SE_HRNet_W48_C(**args):
    model = HRNet(width=48, has_se=True, **args)
    return model


def SE_HRNet_W60_C(**args):
    model = HRNet(width=60, has_se=True, **args)
    return model


def SE_HRNet_W64_C(**args):
    model = HRNet(width=64, has_se=True, **args)
    return model