Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
7eda7522
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7eda7522
编写于
5月 26, 2021
作者:
W
weishengyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify code
上级
c7608cbf
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
19 addition
and
42 deletion
+19
-42
ppcls/arch/backbone/legendary_models/hrnet.py
ppcls/arch/backbone/legendary_models/hrnet.py
+19
-42
未找到文件。
ppcls/arch/backbone/legendary_models/hrnet.py
浏览文件 @
7eda7522
...
...
@@ -215,7 +215,6 @@ class Stage(TheseusLayer):
num_modules
,
num_filters
,
has_se
=
False
,
multi_scale_output
=
True
,
name
=
None
):
super
(
Stage
,
self
).
__init__
()
...
...
@@ -223,19 +222,11 @@ class Stage(TheseusLayer):
self
.
stage_func_list
=
nn
.
LayerList
()
for
i
in
range
(
num_modules
):
if
i
==
num_modules
-
1
and
not
multi_scale_output
:
self
.
stage_func_list
.
append
(
HighResolutionModule
(
num_filters
=
num_filters
,
has_se
=
has_se
,
multi_scale_output
=
False
,
name
=
name
+
'_'
+
str
(
i
+
1
)))
else
:
self
.
stage_func_list
.
append
(
HighResolutionModule
(
num_filters
=
num_filters
,
has_se
=
has_se
,
name
=
name
+
'_'
+
str
(
i
+
1
)))
self
.
stage_func_list
.
append
(
HighResolutionModule
(
num_filters
=
num_filters
,
has_se
=
has_se
,
name
=
name
+
'_'
+
str
(
i
+
1
)))
def
forward
(
self
,
input
,
res_dict
=
None
):
out
=
input
...
...
@@ -248,28 +239,22 @@ class HighResolutionModule(TheseusLayer):
def
__init__
(
self
,
num_filters
,
has_se
=
False
,
multi_scale_output
=
True
,
name
=
None
):
super
(
HighResolutionModule
,
self
).
__init__
()
self
.
basic_block_list
=
[]
self
.
basic_block_list
=
nn
.
LayerList
()
for
i
in
range
(
len
(
num_filters
)):
self
.
basic_block_list
.
append
([])
for
j
in
range
(
4
):
in_ch
=
num_filters
[
i
]
basic_block_func
=
self
.
add_sublayer
(
"bb_{}_branch_layer_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
),
self
.
basic_block_list
.
append
(
nn
.
Sequential
(
*
[
BasicBlock
(
num_channels
=
in_ch
,
num_channels
=
num_filters
[
i
]
,
num_filters
=
num_filters
[
i
],
has_se
=
has_se
))
self
.
basic_block_list
[
i
].
append
(
basic_block_func
)
has_se
=
has_se
)
for
j
in
range
(
4
)]))
self
.
fuse_func
=
FuseLayers
(
in_channels
=
num_filters
,
out_channels
=
num_filters
,
multi_scale_output
=
multi_scale_output
,
name
=
name
)
def
forward
(
self
,
input
,
res_dict
=
None
):
...
...
@@ -288,34 +273,28 @@ class FuseLayers(TheseusLayer):
def
__init__
(
self
,
in_channels
,
out_channels
,
multi_scale_output
=
True
,
name
=
None
):
super
(
FuseLayers
,
self
).
__init__
()
self
.
_actual_ch
=
len
(
in_channels
)
if
multi_scale_output
else
1
self
.
_actual_ch
=
len
(
in_channels
)
self
.
_in_channels
=
in_channels
self
.
residual_func_list
=
[]
for
i
in
range
(
self
.
_actual_ch
):
self
.
residual_func_list
=
nn
.
LayerList
()
for
i
in
range
(
len
(
in_channels
)
):
for
j
in
range
(
len
(
in_channels
)):
residual_func
=
None
if
j
>
i
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
),
self
.
residual_func_list
.
append
(
ConvBNLayer
(
num_channels
=
in_channels
[
j
],
num_filters
=
out_channels
[
i
],
filter_size
=
1
,
stride
=
1
,
act
=
None
))
self
.
residual_func_list
.
append
(
residual_func
)
elif
j
<
i
:
pre_num_filters
=
in_channels
[
j
]
for
k
in
range
(
i
-
j
):
if
k
==
i
-
j
-
1
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
,
k
+
1
),
self
.
residual_func_list
.
append
(
ConvBNLayer
(
num_channels
=
pre_num_filters
,
num_filters
=
out_channels
[
i
],
...
...
@@ -324,9 +303,7 @@ class FuseLayers(TheseusLayer):
act
=
None
))
pre_num_filters
=
out_channels
[
i
]
else
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
,
k
+
1
),
self
.
residual_func_list
.
append
(
ConvBNLayer
(
num_channels
=
pre_num_filters
,
num_filters
=
out_channels
[
j
],
...
...
@@ -334,12 +311,11 @@ class FuseLayers(TheseusLayer):
stride
=
2
,
act
=
"relu"
))
pre_num_filters
=
out_channels
[
j
]
self
.
residual_func_list
.
append
(
residual_func
)
def
forward
(
self
,
input
,
res_dict
=
None
):
outs
=
[]
residual_func_idx
=
0
for
i
in
range
(
self
.
_actual_ch
):
for
i
in
range
(
len
(
self
.
_in_channels
)
):
residual
=
input
[
i
]
for
j
in
range
(
len
(
self
.
_in_channels
)):
if
j
>
i
:
...
...
@@ -421,7 +397,8 @@ class HRNet(TheseusLayer):
stride
=
2
,
act
=
'relu'
)
self
.
layer1
=
self
.
bottleneck_blocks
=
nn
.
Sequential
(
*
[
BottleneckBlock
(
self
.
layer1
=
self
.
bottleneck_blocks
=
nn
.
Sequential
(
*
[
BottleneckBlock
(
num_channels
=
64
if
i
==
0
else
256
,
num_filters
=
64
,
has_se
=
has_se
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录