hrnet.py 20.3 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer

__all__ = [
    "HRNet_W18_C",
    "HRNet_W30_C",
    "HRNet_W32_C",
    "HRNet_W40_C",
    "HRNet_W44_C",
    "HRNet_W48_C",
    "HRNet_W60_C",
    "HRNet_W64_C",
    "SE_HRNet_W18_C",
    "SE_HRNet_W30_C",
    "SE_HRNet_W32_C",
    "SE_HRNet_W40_C",
    "SE_HRNet_W44_C",
    "SE_HRNet_W48_C",
    "SE_HRNet_W60_C",
    "SE_HRNet_W64_C",
]


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
57
                 act="relu"):
W
weishengyu 已提交
58 59
        super(ConvBNLayer, self).__init__()

W
add nn  
weishengyu 已提交
60
        self._conv = nn.Conv2D(
W
weishengyu 已提交
61 62 63 64 65 66 67
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            bias_attr=False)
W
add nn  
weishengyu 已提交
68
        self._batch_norm = nn.BatchNorm(
W
weishengyu 已提交
69
            num_filters,
W
weishengyu 已提交
70
            act=act)
W
weishengyu 已提交
71

W
weishengyu 已提交
72 73
    def forward(self, x, res_dict=None):
        y = self._conv(x)
W
weishengyu 已提交
74 75 76 77 78 79 80 81
        y = self._batch_norm(y)
        return y


class Layer1(TheseusLayer):
    def __init__(self, num_channels, has_se=False, name=None):
        super(Layer1, self).__init__()

W
dbg  
weishengyu 已提交
82
        self.bottleneck_blocks = nn.Sequential(*[BottleneckBlock(
83 84 85 86 87 88 89
                num_channels=num_channels if i == 0 else 256,
                num_filters=64,
                has_se=has_se,
                stride=1,
                downsample=True if i == 0 else False,
                name=name + '_' + str(i + 1))
            for i in range(4)
W
dbg  
weishengyu 已提交
90
        ])
W
weishengyu 已提交
91

W
weishengyu 已提交
92
    def forward(self, x, res_dict=None):
W
dbg  
weishengyu 已提交
93
        y = self.bottleneck_blocks(x)
W
weishengyu 已提交
94
        return y
W
weishengyu 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121


class Branches(TheseusLayer):
    def __init__(self,
                 block_num,
                 in_channels,
                 out_channels,
                 has_se=False,
                 name=None):
        super(Branches, self).__init__()

        self.basic_block_list = []

        for i in range(len(out_channels)):
            self.basic_block_list.append([])
            for j in range(block_num):
                in_ch = in_channels[i] if j == 0 else out_channels[i]
                basic_block_func = self.add_sublayer(
                    "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
                    BasicBlock(
                        num_channels=in_ch,
                        num_filters=out_channels[i],
                        has_se=has_se,
                        name=name + '_branch_layer_' + str(i + 1) + '_' +
                        str(j + 1)))
                self.basic_block_list[i].append(basic_block_func)

W
weishengyu 已提交
122
    def forward(self, x, res_dict=None):
W
weishengyu 已提交
123
        outs = []
W
weishengyu 已提交
124 125
        for idx, xi in enumerate(x):
            conv = xi
W
weishengyu 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
            basic_block_list = self.basic_block_list[idx]
            for basic_block_func in basic_block_list:
                conv = basic_block_func(conv)
            outs.append(conv)
        return outs


class BottleneckBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
                 downsample=False,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
W
weishengyu 已提交
150
            act="relu")
W
weishengyu 已提交
151 152 153 154 155
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
W
weishengyu 已提交
156
            act="relu")
W
weishengyu 已提交
157 158 159 160
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
W
weishengyu 已提交
161
            act=None)
W
weishengyu 已提交
162 163 164 165 166 167

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
W
weishengyu 已提交
168
                act=None)
W
weishengyu 已提交
169 170 171 172 173 174 175 176

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
                reduction_ratio=16,
                name='fc' + name)

W
weishengyu 已提交
177 178 179
    def forward(self, x, res_dict=None):
        residual = x
        conv1 = self.conv1(x)
W
weishengyu 已提交
180 181 182 183
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
W
weishengyu 已提交
184
            residual = self.conv_down(x)
W
weishengyu 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

        if self.has_se:
            conv3 = self.se(conv3)

        y = paddle.add(x=residual, y=conv3)
        y = F.relu(y)
        return y


class BasicBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride=1,
                 has_se=False,
                 downsample=False,
                 name=None):
        super(BasicBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
W
weishengyu 已提交
212
            act="relu")
W
weishengyu 已提交
213 214 215 216 217
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
W
weishengyu 已提交
218
            act=None)
W
weishengyu 已提交
219 220 221 222 223 224

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
W
weishengyu 已提交
225
                act="relu")
W
weishengyu 已提交
226 227 228 229 230 231 232 233

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
                reduction_ratio=16,
                name='fc' + name)

W
weishengyu 已提交
234
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv2 = self.se(conv2)

        y = paddle.add(x=residual, y=conv2)
        y = F.relu(y)
        return y


class SELayer(TheseusLayer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

        self.pool2d_gap = AdaptiveAvgPool2D(1)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
W
add nn  
weishengyu 已提交
260
        self.squeeze = nn.Linear(
W
weishengyu 已提交
261 262 263 264 265 266 267
            num_channels,
            med_ch,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
            bias_attr=ParamAttr(name=name + '_sqz_offset'))

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
W
add nn  
weishengyu 已提交
268
        self.excitation = nn.Linear(
W
weishengyu 已提交
269 270 271 272 273 274
            med_ch,
            num_filters,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
            bias_attr=ParamAttr(name=name + '_exc_offset'))

W
weishengyu 已提交
275
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        pool = self.pool2d_gap(input)
        pool = paddle.squeeze(pool, axis=[2, 3])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.unsqueeze(excitation, axis=[2, 3])
        out = input * excitation
        return out


class Stage(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_modules,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules

        self.stage_func_list = []
        for i in range(num_modules):
            if i == num_modules - 1 and not multi_scale_output:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        multi_scale_output=False,
                        name=name + '_' + str(i + 1)))
            else:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        name=name + '_' + str(i + 1)))

            self.stage_func_list.append(stage_func)

W
weishengyu 已提交
321
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


class HighResolutionModule(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(HighResolutionModule, self).__init__()

        self.branches_func = Branches(
            block_num=4,
            in_channels=num_channels,
            out_channels=num_filters,
            has_se=has_se,
            name=name)

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            multi_scale_output=multi_scale_output,
            name=name)

W
weishengyu 已提交
350
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
        out = self.branches_func(input)
        out = self.fuse_func(out)
        return out


class FuseLayers(TheseusLayer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 multi_scale_output=True,
                 name=None):
        super(FuseLayers, self).__init__()

        self._actual_ch = len(in_channels) if multi_scale_output else 1
        self._in_channels = in_channels

        self.residual_func_list = []
        for i in range(self._actual_ch):
            for j in range(len(in_channels)):
                residual_func = None
                if j > i:
                    residual_func = self.add_sublayer(
                        "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
                        ConvBNLayer(
                            num_channels=in_channels[j],
                            num_filters=out_channels[i],
                            filter_size=1,
                            stride=1,
W
weishengyu 已提交
379
                            act=None))
W
weishengyu 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392
                    self.residual_func_list.append(residual_func)
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[i],
                                    filter_size=3,
                                    stride=2,
W
weishengyu 已提交
393
                                    act=None))
W
weishengyu 已提交
394 395 396 397 398 399 400 401 402 403
                            pre_num_filters = out_channels[i]
                        else:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[j],
                                    filter_size=3,
                                    stride=2,
W
weishengyu 已提交
404
                                    act="relu"))
W
weishengyu 已提交
405 406 407
                            pre_num_filters = out_channels[j]
                        self.residual_func_list.append(residual_func)

W
weishengyu 已提交
408
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        outs = []
        residual_func_idx = 0
        for i in range(self._actual_ch):
            residual = input[i]
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1

                    y = F.upsample(y, scale_factor=2**(j - i), mode="nearest")
                    residual = paddle.add(x=residual, y=y)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

                    residual = paddle.add(x=residual, y=y)

            residual = F.relu(residual)
            outs.append(residual)

        return outs


class LastClsOut(TheseusLayer):
    def __init__(self,
                 num_channel_list,
                 has_se,
                 num_filters_list=[32, 64, 128, 256],
                 name=None):
        super(LastClsOut, self).__init__()

        self.func_list = []
        for idx in range(len(num_channel_list)):
            func = self.add_sublayer(
                "conv_{}_conv_{}".format(name, idx + 1),
                BottleneckBlock(
                    num_channels=num_channel_list[idx],
                    num_filters=num_filters_list[idx],
                    has_se=has_se,
                    downsample=True,
                    name=name + 'conv_' + str(idx + 1)))
            self.func_list.append(func)

W
weishengyu 已提交
454
    def forward(self, inputs, res_dict=None):
W
weishengyu 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
        outs = []
        for idx, input in enumerate(inputs):
            out = self.func_list[idx](input)
            outs.append(out)
        return outs


class HRNet(TheseusLayer):
    def __init__(self, width=18, has_se=False, class_dim=1000):
        super(HRNet, self).__init__()

        self.width = width
        self.has_se = has_se
        self.channels = {
            18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
            30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
            32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
            40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
            44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
            48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
            60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
            64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
        }
        self._class_dim = class_dim

        channels_2, channels_3, channels_4 = self.channels[width]
        num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3

        self.conv_layer1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=3,
            stride=2,
W
weishengyu 已提交
488
            act='relu')
W
weishengyu 已提交
489 490 491 492 493 494

        self.conv_layer1_2 = ConvBNLayer(
            num_channels=64,
            num_filters=64,
            filter_size=3,
            stride=2,
W
weishengyu 已提交
495
            act='relu')
W
weishengyu 已提交
496 497 498

        self.la1 = Layer1(num_channels=64, has_se=has_se, name="layer2")

W
dbg  
weishengyu 已提交
499
        self.tr1_1 = ConvBNLayer(
W
weishengyu 已提交
500 501
            num_channels=256,
            num_filters=width,
W
dbg  
weishengyu 已提交
502 503
            filter_size=3)
        self.tr1_2 = ConvBNLayer(
W
dbg  
weishengyu 已提交
504
            num_channels=256,
W
weishengyu 已提交
505
            num_filters=width * 2,
W
dbg  
weishengyu 已提交
506
            filter_size=3)
W
weishengyu 已提交
507 508 509 510 511 512 513 514

        self.st2 = Stage(
            num_channels=channels_2,
            num_modules=num_modules_2,
            num_filters=channels_2,
            has_se=self.has_se,
            name="st2")

W
dbg  
weishengyu 已提交
515
        self.tr2 = ConvBNLayer(
W
weishengyu 已提交
516 517
            num_channels=width * 2,
            num_filters=width * 4,
W
dbg  
weishengyu 已提交
518
            filter_size=3)
W
weishengyu 已提交
519 520 521 522 523 524 525
        self.st3 = Stage(
            num_channels=channels_3,
            num_modules=num_modules_3,
            num_filters=channels_3,
            has_se=self.has_se,
            name="st3")

W
dbg  
weishengyu 已提交
526
        self.tr3 = ConvBNLayer(
W
weishengyu 已提交
527 528
            num_channels=width * 4,
            num_filters=width * 8,
W
dbg  
weishengyu 已提交
529
            filter_size=3)
W
weishengyu 已提交
530

W
weishengyu 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
        self.st4 = Stage(
            num_channels=channels_4,
            num_modules=num_modules_4,
            num_filters=channels_4,
            has_se=self.has_se,
            name="st4")

        # classification
        num_filters_list = [32, 64, 128, 256]
        self.last_cls = LastClsOut(
            num_channel_list=channels_4,
            has_se=self.has_se,
            num_filters_list=num_filters_list,
            name="cls_head", )

        last_num_filters = [256, 512, 1024]
        self.cls_head_conv_list = []
        for idx in range(3):
            self.cls_head_conv_list.append(
                self.add_sublayer(
                    "cls_head_add{}".format(idx + 1),
                    ConvBNLayer(
                        num_channels=num_filters_list[idx] * 4,
                        num_filters=last_num_filters[idx],
                        filter_size=3,
W
weishengyu 已提交
556
                        stride=2)))
W
weishengyu 已提交
557 558 559 560 561

        self.conv_last = ConvBNLayer(
            num_channels=1024,
            num_filters=2048,
            filter_size=1,
W
weishengyu 已提交
562
            stride=1)
W
weishengyu 已提交
563 564 565 566 567

        self.pool2d_avg = AdaptiveAvgPool2D(1)

        stdv = 1.0 / math.sqrt(2048 * 1.0)

W
add nn  
weishengyu 已提交
568
        self.out = nn.Linear(
W
weishengyu 已提交
569 570 571 572 573 574
            2048,
            class_dim,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

W
weishengyu 已提交
575
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
576 577 578 579 580
        conv1 = self.conv_layer1_1(input)
        conv2 = self.conv_layer1_2(conv1)

        la1 = self.la1(conv2)

W
dbg  
weishengyu 已提交
581 582
        tr1_1 = self.tr1_1(la1)
        tr1_2 = self.tr1_2(la1)
W
dbg  
weishengyu 已提交
583
        st2 = self.st2([tr1_1, tr1_2])
W
weishengyu 已提交
584

W
dbg  
weishengyu 已提交
585 586 587
        tr2 = self.tr2(st2[-1])
        st2.append(tr2)
        st3 = self.st3(st2)
W
weishengyu 已提交
588

W
dbg  
weishengyu 已提交
589 590 591
        tr3 = self.tr3(st3[-1])
        st3.append(tr3)
        st4 = self.st4(st3)
W
weishengyu 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

        last_cls = self.last_cls(st4)

        y = last_cls[0]
        for idx in range(3):
            y = paddle.add(last_cls[idx + 1], self.cls_head_conv_list[idx](y))

        y = self.conv_last(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, y.shape[1]])
        y = self.out(y)
        return y


def HRNet_W18_C(**args):
    model = HRNet(width=18, **args)
    return model


def HRNet_W30_C(**args):
    model = HRNet(width=30, **args)
    return model


def HRNet_W32_C(**args):
    model = HRNet(width=32, **args)
    return model


def HRNet_W40_C(**args):
    model = HRNet(width=40, **args)
    return model


def HRNet_W44_C(**args):
    model = HRNet(width=44, **args)
    return model


def HRNet_W48_C(**args):
    model = HRNet(width=48, **args)
    return model


def HRNet_W60_C(**args):
    model = HRNet(width=60, **args)
    return model


def HRNet_W64_C(**args):
    model = HRNet(width=64, **args)
    return model


def SE_HRNet_W18_C(**args):
    model = HRNet(width=18, has_se=True, **args)
    return model


def SE_HRNet_W30_C(**args):
    model = HRNet(width=30, has_se=True, **args)
    return model


def SE_HRNet_W32_C(**args):
    model = HRNet(width=32, has_se=True, **args)
    return model


def SE_HRNet_W40_C(**args):
    model = HRNet(width=40, has_se=True, **args)
    return model


def SE_HRNet_W44_C(**args):
    model = HRNet(width=44, has_se=True, **args)
    return model


def SE_HRNet_W48_C(**args):
    model = HRNet(width=48, has_se=True, **args)
    return model


def SE_HRNet_W60_C(**args):
    model = HRNet(width=60, has_se=True, **args)
    return model


def SE_HRNet_W64_C(**args):
    model = HRNet(width=64, has_se=True, **args)
    return model