hrnet.py 22.9 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer

__all__ = [
    "HRNet_W18_C",
    "HRNet_W30_C",
    "HRNet_W32_C",
    "HRNet_W40_C",
    "HRNet_W44_C",
    "HRNet_W48_C",
    "HRNet_W60_C",
    "HRNet_W64_C",
    "SE_HRNet_W18_C",
    "SE_HRNet_W30_C",
    "SE_HRNet_W32_C",
    "SE_HRNet_W40_C",
    "SE_HRNet_W44_C",
    "SE_HRNet_W48_C",
    "SE_HRNet_W60_C",
    "SE_HRNet_W64_C",
]


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

W
add nn  
weishengyu 已提交
61
        self._conv = nn.Conv2D(
W
weishengyu 已提交
62 63 64 65 66 67 68 69 70
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        bn_name = name + '_bn'
W
add nn  
weishengyu 已提交
71
        self._batch_norm = nn.BatchNorm(
W
weishengyu 已提交
72 73 74 75 76 77 78
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

W
weishengyu 已提交
79 80
    def forward(self, x, res_dict=None):
        y = self._conv(x)
W
weishengyu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        y = self._batch_norm(y)
        return y


class Layer1(TheseusLayer):
    def __init__(self, num_channels, has_se=False, name=None):
        super(Layer1, self).__init__()

        self.bottleneck_block_list = []

        for i in range(4):
            bottleneck_block = self.add_sublayer(
                "bb_{}_{}".format(name, i + 1),
                BottleneckBlock(
                    num_channels=num_channels if i == 0 else 256,
                    num_filters=64,
                    has_se=has_se,
                    stride=1,
                    downsample=True if i == 0 else False,
                    name=name + '_' + str(i + 1)))
            self.bottleneck_block_list.append(bottleneck_block)

W
weishengyu 已提交
103 104
    def forward(self, x, res_dict=None):
        y = x
W
weishengyu 已提交
105
        for block_func in self.bottleneck_block_list:
W
weishengyu 已提交
106 107
            y = block_func(y)
        return y
W
weishengyu 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139


class TransitionLayer(TheseusLayer):
    def __init__(self, in_channels, out_channels, name=None):
        super(TransitionLayer, self).__init__()

        num_in = len(in_channels)
        num_out = len(out_channels)
        out = []
        self.conv_bn_func_list = []
        for i in range(num_out):
            residual = None
            if i < num_in:
                if in_channels[i] != out_channels[i]:
                    residual = self.add_sublayer(
                        "transition_{}_layer_{}".format(name, i + 1),
                        ConvBNLayer(
                            num_channels=in_channels[i],
                            num_filters=out_channels[i],
                            filter_size=3,
                            name=name + '_layer_' + str(i + 1)))
            else:
                residual = self.add_sublayer(
                    "transition_{}_layer_{}".format(name, i + 1),
                    ConvBNLayer(
                        num_channels=in_channels[-1],
                        num_filters=out_channels[i],
                        filter_size=3,
                        stride=2,
                        name=name + '_layer_' + str(i + 1)))
            self.conv_bn_func_list.append(residual)

W
weishengyu 已提交
140
    def forward(self, x, res_dict=None):
W
weishengyu 已提交
141 142 143
        outs = []
        for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
            if conv_bn_func is None:
W
weishengyu 已提交
144
                outs.append(x[idx])
W
weishengyu 已提交
145
            else:
W
weishengyu 已提交
146 147
                if idx < len(x):
                    outs.append(conv_bn_func(x[idx]))
W
weishengyu 已提交
148
                else:
W
weishengyu 已提交
149
                    outs.append(conv_bn_func(x[-1]))
W
weishengyu 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        return outs


class Branches(TheseusLayer):
    def __init__(self,
                 block_num,
                 in_channels,
                 out_channels,
                 has_se=False,
                 name=None):
        super(Branches, self).__init__()

        self.basic_block_list = []

        for i in range(len(out_channels)):
            self.basic_block_list.append([])
            for j in range(block_num):
                in_ch = in_channels[i] if j == 0 else out_channels[i]
                basic_block_func = self.add_sublayer(
                    "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
                    BasicBlock(
                        num_channels=in_ch,
                        num_filters=out_channels[i],
                        has_se=has_se,
                        name=name + '_branch_layer_' + str(i + 1) + '_' +
                        str(j + 1)))
                self.basic_block_list[i].append(basic_block_func)

W
weishengyu 已提交
178
    def forward(self, x, res_dict=None):
W
weishengyu 已提交
179
        outs = []
W
weishengyu 已提交
180 181
        for idx, xi in enumerate(x):
            conv = xi
W
weishengyu 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
            basic_block_list = self.basic_block_list[idx]
            for basic_block_func in basic_block_list:
                conv = basic_block_func(conv)
            outs.append(conv)
        return outs


class BottleneckBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
                 downsample=False,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act="relu",
            name=name + "_conv1", )
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_conv2")
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_conv3")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                act=None,
                name=name + "_downsample")

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
                reduction_ratio=16,
                name='fc' + name)

W
weishengyu 已提交
237 238 239
    def forward(self, x, res_dict=None):
        residual = x
        conv1 = self.conv1(x)
W
weishengyu 已提交
240 241 242 243
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
W
weishengyu 已提交
244
            residual = self.conv_down(x)
W
weishengyu 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

        if self.has_se:
            conv3 = self.se(conv3)

        y = paddle.add(x=residual, y=conv3)
        y = F.relu(y)
        return y


class BasicBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride=1,
                 has_se=False,
                 downsample=False,
                 name=None):
        super(BasicBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_conv1")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
            act=None,
            name=name + "_conv2")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                act="relu",
                name=name + "_downsample")

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
                reduction_ratio=16,
                name='fc' + name)

W
weishengyu 已提交
297
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv2 = self.se(conv2)

        y = paddle.add(x=residual, y=conv2)
        y = F.relu(y)
        return y


class SELayer(TheseusLayer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

        self.pool2d_gap = AdaptiveAvgPool2D(1)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
W
add nn  
weishengyu 已提交
323
        self.squeeze = nn.Linear(
W
weishengyu 已提交
324 325 326 327 328 329 330
            num_channels,
            med_ch,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
            bias_attr=ParamAttr(name=name + '_sqz_offset'))

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
W
add nn  
weishengyu 已提交
331
        self.excitation = nn.Linear(
W
weishengyu 已提交
332 333 334 335 336 337
            med_ch,
            num_filters,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
            bias_attr=ParamAttr(name=name + '_exc_offset'))

W
weishengyu 已提交
338
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
        pool = self.pool2d_gap(input)
        pool = paddle.squeeze(pool, axis=[2, 3])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.unsqueeze(excitation, axis=[2, 3])
        out = input * excitation
        return out


class Stage(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_modules,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules

        self.stage_func_list = []
        for i in range(num_modules):
            if i == num_modules - 1 and not multi_scale_output:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        multi_scale_output=False,
                        name=name + '_' + str(i + 1)))
            else:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        name=name + '_' + str(i + 1)))

            self.stage_func_list.append(stage_func)

W
weishengyu 已提交
384
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


class HighResolutionModule(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(HighResolutionModule, self).__init__()

        self.branches_func = Branches(
            block_num=4,
            in_channels=num_channels,
            out_channels=num_filters,
            has_se=has_se,
            name=name)

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            multi_scale_output=multi_scale_output,
            name=name)

W
weishengyu 已提交
413
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
        out = self.branches_func(input)
        out = self.fuse_func(out)
        return out


class FuseLayers(TheseusLayer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 multi_scale_output=True,
                 name=None):
        super(FuseLayers, self).__init__()

        self._actual_ch = len(in_channels) if multi_scale_output else 1
        self._in_channels = in_channels

        self.residual_func_list = []
        for i in range(self._actual_ch):
            for j in range(len(in_channels)):
                residual_func = None
                if j > i:
                    residual_func = self.add_sublayer(
                        "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
                        ConvBNLayer(
                            num_channels=in_channels[j],
                            num_filters=out_channels[i],
                            filter_size=1,
                            stride=1,
                            act=None,
                            name=name + '_layer_' + str(i + 1) + '_' +
                            str(j + 1)))
                    self.residual_func_list.append(residual_func)
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[i],
                                    filter_size=3,
                                    stride=2,
                                    act=None,
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[i]
                        else:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[j],
                                    filter_size=3,
                                    stride=2,
                                    act="relu",
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[j]
                        self.residual_func_list.append(residual_func)

W
weishengyu 已提交
477
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        outs = []
        residual_func_idx = 0
        for i in range(self._actual_ch):
            residual = input[i]
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1

                    y = F.upsample(y, scale_factor=2**(j - i), mode="nearest")
                    residual = paddle.add(x=residual, y=y)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

                    residual = paddle.add(x=residual, y=y)

            residual = F.relu(residual)
            outs.append(residual)

        return outs


class LastClsOut(TheseusLayer):
    def __init__(self,
                 num_channel_list,
                 has_se,
                 num_filters_list=[32, 64, 128, 256],
                 name=None):
        super(LastClsOut, self).__init__()

        self.func_list = []
        for idx in range(len(num_channel_list)):
            func = self.add_sublayer(
                "conv_{}_conv_{}".format(name, idx + 1),
                BottleneckBlock(
                    num_channels=num_channel_list[idx],
                    num_filters=num_filters_list[idx],
                    has_se=has_se,
                    downsample=True,
                    name=name + 'conv_' + str(idx + 1)))
            self.func_list.append(func)

W
weishengyu 已提交
523
    def forward(self, inputs, res_dict=None):
W
weishengyu 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
        outs = []
        for idx, input in enumerate(inputs):
            out = self.func_list[idx](input)
            outs.append(out)
        return outs


class HRNet(TheseusLayer):
    def __init__(self, width=18, has_se=False, class_dim=1000):
        super(HRNet, self).__init__()

        self.width = width
        self.has_se = has_se
        self.channels = {
            18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
            30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
            32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
            40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
            44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
            48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
            60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
            64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
        }
        self._class_dim = class_dim

        channels_2, channels_3, channels_4 = self.channels[width]
        num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3

        self.conv_layer1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_1")

        self.conv_layer1_2 = ConvBNLayer(
            num_channels=64,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_2")

        self.la1 = Layer1(num_channels=64, has_se=has_se, name="layer2")

        self.tr1 = TransitionLayer(
            in_channels=[256], out_channels=channels_2, name="tr1")

        self.st2 = Stage(
            num_channels=channels_2,
            num_modules=num_modules_2,
            num_filters=channels_2,
            has_se=self.has_se,
            name="st2")

        self.tr2 = TransitionLayer(
            in_channels=channels_2, out_channels=channels_3, name="tr2")
        self.st3 = Stage(
            num_channels=channels_3,
            num_modules=num_modules_3,
            num_filters=channels_3,
            has_se=self.has_se,
            name="st3")

        self.tr3 = TransitionLayer(
            in_channels=channels_3, out_channels=channels_4, name="tr3")
        self.st4 = Stage(
            num_channels=channels_4,
            num_modules=num_modules_4,
            num_filters=channels_4,
            has_se=self.has_se,
            name="st4")

        # classification
        num_filters_list = [32, 64, 128, 256]
        self.last_cls = LastClsOut(
            num_channel_list=channels_4,
            has_se=self.has_se,
            num_filters_list=num_filters_list,
            name="cls_head", )

        last_num_filters = [256, 512, 1024]
        self.cls_head_conv_list = []
        for idx in range(3):
            self.cls_head_conv_list.append(
                self.add_sublayer(
                    "cls_head_add{}".format(idx + 1),
                    ConvBNLayer(
                        num_channels=num_filters_list[idx] * 4,
                        num_filters=last_num_filters[idx],
                        filter_size=3,
                        stride=2,
                        name="cls_head_add" + str(idx + 1))))

        self.conv_last = ConvBNLayer(
            num_channels=1024,
            num_filters=2048,
            filter_size=1,
            stride=1,
            name="cls_head_last_conv")

        self.pool2d_avg = AdaptiveAvgPool2D(1)

        stdv = 1.0 / math.sqrt(2048 * 1.0)

W
add nn  
weishengyu 已提交
630
        self.out = nn.Linear(
W
weishengyu 已提交
631 632 633 634 635 636
            2048,
            class_dim,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

W
weishengyu 已提交
637
    def forward(self, input, res_dict=None):
W
weishengyu 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
        conv1 = self.conv_layer1_1(input)
        conv2 = self.conv_layer1_2(conv1)

        la1 = self.la1(conv2)

        tr1 = self.tr1([la1])
        st2 = self.st2(tr1)

        tr2 = self.tr2(st2)
        st3 = self.st3(tr2)

        tr3 = self.tr3(st3)
        st4 = self.st4(tr3)

        last_cls = self.last_cls(st4)

        y = last_cls[0]
        for idx in range(3):
            y = paddle.add(last_cls[idx + 1], self.cls_head_conv_list[idx](y))

        y = self.conv_last(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, y.shape[1]])
        y = self.out(y)
        return y


def HRNet_W18_C(**args):
    model = HRNet(width=18, **args)
    return model


def HRNet_W30_C(**args):
    model = HRNet(width=30, **args)
    return model


def HRNet_W32_C(**args):
    model = HRNet(width=32, **args)
    return model


def HRNet_W40_C(**args):
    model = HRNet(width=40, **args)
    return model


def HRNet_W44_C(**args):
    model = HRNet(width=44, **args)
    return model


def HRNet_W48_C(**args):
    model = HRNet(width=48, **args)
    return model


def HRNet_W60_C(**args):
    model = HRNet(width=60, **args)
    return model


def HRNet_W64_C(**args):
    model = HRNet(width=64, **args)
    return model


def SE_HRNet_W18_C(**args):
    model = HRNet(width=18, has_se=True, **args)
    return model


def SE_HRNet_W30_C(**args):
    model = HRNet(width=30, has_se=True, **args)
    return model


def SE_HRNet_W32_C(**args):
    model = HRNet(width=32, has_se=True, **args)
    return model


def SE_HRNet_W40_C(**args):
    model = HRNet(width=40, has_se=True, **args)
    return model


def SE_HRNet_W44_C(**args):
    model = HRNet(width=44, has_se=True, **args)
    return model


def SE_HRNet_W48_C(**args):
    model = HRNet(width=48, has_se=True, **args)
    return model


def SE_HRNet_W60_C(**args):
    model = HRNet(width=60, has_se=True, **args)
    return model


def SE_HRNet_W64_C(**args):
    model = HRNet(width=64, has_se=True, **args)
    return model