提交 4e5b60c0 编写于 作者: W weishengyu

remove name of ConvBN

上级 9b61df62
......@@ -114,8 +114,7 @@ class TransitionLayer(TheseusLayer):
ConvBNLayer(
num_channels=in_channels[i],
num_filters=out_channels[i],
filter_size=3,
name=name + '_layer_' + str(i + 1)))
filter_size=3))
else:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
......@@ -123,8 +122,7 @@ class TransitionLayer(TheseusLayer):
num_channels=in_channels[-1],
num_filters=out_channels[i],
filter_size=3,
stride=2,
name=name + '_layer_' + str(i + 1)))
stride=2))
self.conv_bn_func_list.append(residual)
def forward(self, x, res_dict=None):
......@@ -193,29 +191,25 @@ class BottleneckBlock(TheseusLayer):
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act="relu",
name=name + "_conv1", )
act="relu")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu",
name=name + "_conv2")
act="relu")
self.conv3 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_conv3")
act=None)
if self.downsample:
self.conv_down = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_downsample")
act=None)
if self.has_se:
self.se = SELayer(
......@@ -259,23 +253,20 @@ class BasicBlock(TheseusLayer):
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu",
name=name + "_conv1")
act="relu")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=1,
act=None,
name=name + "_conv2")
act=None)
if self.downsample:
self.conv_down = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
act="relu",
name=name + "_downsample")
act="relu")
if self.has_se:
self.se = SELayer(
......@@ -429,9 +420,7 @@ class FuseLayers(TheseusLayer):
num_filters=out_channels[i],
filter_size=1,
stride=1,
act=None,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1)))
act=None))
self.residual_func_list.append(residual_func)
elif j < i:
pre_num_filters = in_channels[j]
......@@ -445,9 +434,7 @@ class FuseLayers(TheseusLayer):
num_filters=out_channels[i],
filter_size=3,
stride=2,
act=None,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
act=None))
pre_num_filters = out_channels[i]
else:
residual_func = self.add_sublayer(
......@@ -458,9 +445,7 @@ class FuseLayers(TheseusLayer):
num_filters=out_channels[j],
filter_size=3,
stride=2,
act="relu",
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
act="relu"))
pre_num_filters = out_channels[j]
self.residual_func_list.append(residual_func)
......@@ -544,16 +529,14 @@ class HRNet(TheseusLayer):
num_filters=64,
filter_size=3,
stride=2,
act='relu',
name="layer1_1")
act='relu')
self.conv_layer1_2 = ConvBNLayer(
num_channels=64,
num_filters=64,
filter_size=3,
stride=2,
act='relu',
name="layer1_2")
act='relu')
self.la1 = Layer1(num_channels=64, has_se=has_se, name="layer2")
......@@ -603,15 +586,13 @@ class HRNet(TheseusLayer):
num_channels=num_filters_list[idx] * 4,
num_filters=last_num_filters[idx],
filter_size=3,
stride=2,
name="cls_head_add" + str(idx + 1))))
stride=2)))
self.conv_last = ConvBNLayer(
num_channels=1024,
num_filters=2048,
filter_size=1,
stride=1,
name="cls_head_last_conv")
stride=1)
self.pool2d_avg = AdaptiveAvgPool2D(1)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册