op_test.py 79.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28

29
import paddle
30 31
import paddle.fluid as fluid
import paddle.fluid.core as core
32 33 34
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
35
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
36 37 38 39 40
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
41
from paddle.fluid import unique_name
42 43 44 45 46 47 48
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
49 50


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


93 94 95 96 97 98 99 100
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


101 102 103 104
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
105
    for i in six.moves.xrange(len(prob)):
106 107 108 109
        prob[i] /= prob_sum[i]
    return prob


110 111
def get_numeric_gradient(place,
                         scope,
112 113 114
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
115
                         output_names,
116
                         delta=0.005,
C
chengduo 已提交
117
                         in_place=False):
Y
Yu Yang 已提交
118
    # FIXME: change this method by compile time concepts
119
    set_input(scope, op, inputs, place)
120 121

    def product(dim):
M
minqiyang 已提交
122
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
123 124

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
125 126
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
127
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
128
        tensor_to_check_dtype = np.float32
129
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
130
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
131 132 133 134
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
135 136
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
137 138 139 140
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
141
    else:
142 143
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
144

C
chengduo 已提交
145 146 147 148
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
149
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
150 151 152
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
153 154 155
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
156 157
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

158 159 160
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
161 162 163 164
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
165 166 167 168 169
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
            return struct.unpack('<f', struct.pack('<I', numpy_tensor[i]
                                                   << 16))[0]
D
dzhwinter 已提交
170
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
171
            return tensor._get_float_element(i)
172
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
173
            return tensor._get_double_element(i)
174 175 176
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
177 178

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
179 180 181 182 183
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
184
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
185
            tensor.set(numpy_tensor, place)
186 187 188 189 190 191 192
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
193
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
194
            tensor._set_float_element(i, e)
195
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
196
            tensor._set_double_element(i, e)
197 198 199
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
200

201 202
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
203
    for i in six.moves.xrange(tensor_size):
204
        if in_place:
205
            set_input(scope, op, inputs, place)
206 207

        # get one input element throw it's index i.
208
        origin = __get_elem__(tensor_to_check, i)
209 210
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
211
        __set_elem__(tensor_to_check, i, x_pos)
212 213 214
        y_pos = get_output()

        if in_place:
215
            set_input(scope, op, inputs, place)
216 217

        x_neg = origin - delta
218
        __set_elem__(tensor_to_check, i, x_neg)
219 220
        y_neg = get_output()

221
        __set_elem__(tensor_to_check, i, origin)
222 223
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
224
    return gradient_flat.reshape(tensor_to_check.shape())
225 226


227 228
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
229

230
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
231
       cases that do not need to do check_grad. This decorator is used to skip the
232
       check_grad of the above cases.
C
cc 已提交
233 234

       Note: the execution of unit test will not be skipped. It just avoids check_grad
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


251 252 253 254
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


255 256 257 258
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

259 260 261
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
262
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
263

264 265 266
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
267 268


269 270 271 272 273 274
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
        lambda x: struct.unpack('<f', struct.pack('<I', x << 16))[0],
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
275 276


277
class OpTest(unittest.TestCase):
278 279 280 281 282
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
283
        cls.call_once = False
284
        cls.dtype = None
285
        cls.outputs = {}
286
        cls.input_shape_is_large = True
287 288 289 290

        np.random.seed(123)
        random.seed(124)

291 292 293 294
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
295

296 297
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
298
        """Restore random seeds"""
299 300 301
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

302 303
        _set_use_system_allocator(cls._use_system_allocator)

304 305 306 307
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
308
                if is_mkldnn_op_test():
309 310 311 312 313 314 315 316
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

317 318 319
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
320
        def is_mkldnn_op_test():
321
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
322

323 324 325
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

326 327 328
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

329 330
        if not hasattr(cls, "op_type"):
            raise AssertionError(
331 332
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
333

J
juncaipeng 已提交
334 335
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
336
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
337
            if cls.dtype is None or \
338 339
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
340 341 342 343
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

344
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
345 346
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
347
                and not hasattr(cls, 'exist_fp64_check_grad') \
348
                and not is_xpu_op_test() \
349
                and not is_mkldnn_op_test() \
350 351
                and not is_rocm_op_test() \
                and not is_npu_op_test():
J
juncaipeng 已提交
352 353 354 355
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

356
            if not cls.input_shape_is_large \
357 358 359 360
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
361

362 363 364 365 366
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

367
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
368 369
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
370
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
                getattr(self, 'mkldnn_data_type') is "bfloat16") or (
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
388

389
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
390 391 392 393
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
394 395 396
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
419 420
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
421 422
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
423 424 425
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
426 427 428
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
429
            if dtype in input_dtype_set:
J
juncaipeng 已提交
430 431
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
432
        # save input dtype in class attr
433
        self.__class__.dtype = self.dtype
434

Y
Yiqun Liu 已提交
435 436 437 438 439 440 441 442
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
443 444 445 446 447 448
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
449
                    if isinstance(np_value, tuple):
450
                        tensor.set(np_value[0], place)
451
                        tensor.set_recursive_sequence_lengths(np_value[1])
452
                    else:
453
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
454 455 456 457
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
458
                    tensor.set(self.inputs[var_name][0], place)
459 460
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
461
                else:
462
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
463 464 465
                feed_map[var_name] = tensor
        return feed_map

466
    def _append_ops(self, block):
J
juncaipeng 已提交
467
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
468
        if self.is_mkldnn_op():
469
            self.__class__.use_mkldnn = True
C
cc 已提交
470

Y
Yiqun Liu 已提交
471
        if self.is_xpu_op():
472 473
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
474
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
475 476 477 478 479 480
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
481 482 483 484 485 486 487 488 489

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
490 491 492 493 494
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
C
cc 已提交
495
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
496 497
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
498

499 500
        return op

501 502
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
503
        for name, value in six.iteritems(numpy_inputs):
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
523 524 525 526
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
527
            v = fluid.dygraph.base.to_variable(value=data)
528
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
529 530
            return v
        else:
L
lujun 已提交
531
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
532

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
603
                    v.value().get_tensor().set_recursive_sequence_lengths(
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
665
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
666
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
667
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
668 669
            block = fluid.default_main_program().global_block()

670
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
671

672 673 674
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
675 676

            # prepare output variable
677 678 679 680 681 682 683 684 685
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
686 687 688 689
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
690
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
691
            return outputs
692

693 694 695 696 697 698
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
699
                     for_inplace_test=None):
700 701
        program = Program()
        block = program.global_block()
702
        op = self._append_ops(block)
703 704 705 706 707

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

708
        if for_inplace_test:
C
cc 已提交
709 710
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
711 712
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
713 714
            for out_name in op.output_arg_names:
                var = block.var(out_name)
715 716
                if 0 in var.shape:
                    var.persistable = True
717
        original_program = program
718 719
        if parallel:
            use_cuda = False
720
            if isinstance(place, fluid.CUDAPlace):
721
                use_cuda = True
722 723 724
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
725 726 727 728
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
729
            for var_name, var in six.iteritems(outputs):
730 731
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
732 733
                if isinstance(var, list):
                    for v in var:
734
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
735
                else:
736
                    fetch_list.append(var.name)
737 738 739 740
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
741 742 743 744 745 746 747 748 749

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

750
        executor = Executor(place)
751 752 753 754
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
755 756
        self.op = op
        self.program = original_program
757 758 759 760
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
761

762 763 764 765 766 767 768 769 770
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
771
            place (CPUPlace | CUDAPlace): The place where the op runs.
772 773 774 775 776 777 778 779 780 781
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
782
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
783 784 785
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
786 787
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
788 789 790
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
791
                        expect_out, actual_out, atol=inplace_atol),
792 793
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
794 795
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
796 797
            else:
                self.assertTrue(
798
                    np.array_equal(expect_out, actual_out),
799 800
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
801 802
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
803 804 805 806 807 808 809 810

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
811
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
838 839
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
855
            place (CPUPlace | CUDAPlace): The place where the op runs.
856 857 858
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
859
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
891

892
        Args:
C
cc 已提交
893 894
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
895
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
911
                # get grad_op_desc
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
935
        """Check the inplace correctness of given op (self.op_type).
936
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
937

938
        Args:
C
cc 已提交
939
            place (CPUPlace | CUDAPlace): The place where the op runs.
940 941 942 943
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
944 945
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
946 947
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
948 949 950 951 952 953 954 955 956 957
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
958
        # compare expect_outs and actual_outs
959 960 961 962 963 964
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
965 966 967 968 969 970 971 972 973 974 975 976 977
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
978
            place (CPUPlace | CUDAPlace): The place where the op runs.
979 980 981 982 983 984 985 986 987
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
988
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
989
                                                                  set(), [])
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1015
        """Check the inplace correctness of given grad_op_desc.
1016 1017 1018 1019 1020 1021

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1022
            place (CPUPlace | CUDAPlace): The place where the op runs.
1023 1024 1025 1026 1027 1028
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1029 1030
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1054
            place (CPUPlace | CUDAPlace): The place where the op runs.
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1070 1071
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1085 1086
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1087
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1100
                else:
1101 1102
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1103

1104 1105
    def check_output_with_place(self,
                                place,
1106
                                atol=0,
1107
                                no_check_set=None,
M
minqiyang 已提交
1108
                                equal_nan=False,
1109
                                check_dygraph=True,
1110
                                inplace_atol=None):
1111 1112 1113 1114 1115
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1116
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1117 1118 1119 1120 1121 1122 1123
            if self.is_mkldnn_op():
                check_dygraph = False
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1124
            else:
Y
Yiqun Liu 已提交
1125
                atol = 1e-2
1126

1127 1128 1129 1130
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1131

L
lujun 已提交
1132 1133
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1134
                place, no_check_set=no_check_set)
1135
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1136

Y
Yang Yang(Tony) 已提交
1137
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1138 1139
            if out_name not in self.outputs:
                continue
1140 1141
            if no_check_set is not None and out_name in no_check_set:
                continue
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1155 1156
            def find_actual(target_name, fetch_list):
                found = [
1157 1158
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1159 1160 1161 1162 1163 1164
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1165 1166
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1167 1168 1169
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1170 1171
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1172
                    if check_dygraph:
1173 1174
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1175 1176
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
Y
Yang Yang(Tony) 已提交
1177
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1178 1179
                    actual = outs[idx]
                    actual_t = np.array(actual)
1180 1181
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1182 1183
                    self.assertTrue(
                        np.allclose(
1184
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1185 1186
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1187
                    if check_dygraph:
M
minqiyang 已提交
1188 1189 1190 1191 1192 1193 1194
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1195
                            str(place) + " in dygraph mode")
1196 1197
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1198 1199
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1200
                            ") has different lod at " + str(place))
1201 1202
                        if check_dygraph:
                            self.assertListEqual(
1203
                                imperative_actual.value().get_tensor()
1204 1205 1206 1207
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1208
            else:
L
lujun 已提交
1209
                if check_dygraph:
1210 1211
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1212 1213
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
Y
Yang Yang(Tony) 已提交
1214
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1215 1216
                actual = outs[idx]
                actual_t = np.array(actual)
1217

1218
                expect = self.outputs[out_name]
1219
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1220

Y
Yiqun Liu 已提交
1221
                # np.uint16 represents bfloat16
1222 1223 1224
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1225
                    actual_t = convert_uint16_to_float(actual_t)
W
wuhuanzhou 已提交
1226 1227 1228
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1229

1230 1231 1232 1233
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
Y
Yiqun Liu 已提交
1234

1235 1236 1237 1238 1239
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1240 1241
                self.assertTrue(
                    np.allclose(
W
wuhuanzhou 已提交
1242 1243 1244
                        actual_t,
                        expect_t,
                        atol=atol,
Y
Yiqun Liu 已提交
1245
                        rtol=rtol,
W
wuhuanzhou 已提交
1246
                        equal_nan=equal_nan),
E
emailweixu 已提交
1247
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1248
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1249
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1250
                if check_dygraph:
Y
Yiqun Liu 已提交
1251 1252 1253 1254 1255 1256
                    if self.is_bfloat16_op():
                        if imperative_actual_t.dtype == np.uint16:
                            imperative_actual_t = convert_uint16_to_float(
                                imperative_actual_t)
                        if expect_t.dtype == np.uint16:
                            expect_t = convert_uint16_to_float(expect_t)
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
Y
Yiqun Liu 已提交
1268
                                rtol=rtol,
1269 1270 1271 1272 1273
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1274
                if isinstance(expect, tuple):
1275 1276
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1277
                                         ") has different lod at " + str(place))
L
lujun 已提交
1278
                    if check_dygraph:
M
minqiyang 已提交
1279
                        self.assertListEqual(
1280
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1281 1282
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
1283
                            str(place) + " in dygraph mode")
1284

C
cc 已提交
1285
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1286 1287
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1288
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1289 1290 1291
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1292 1293
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1294 1295
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1296
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1297
        # No effect on original OpTest
1298
        # Currently not support ParallelExecutor on XPUPlace.
1299 1300
        if not paddle.is_compiled_with_xpu(
        ) and not paddle.is_compiled_with_npu():
1301 1302
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1352
    def _get_places(self):
D
dzhwinter 已提交
1353 1354 1355 1356 1357 1358
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1359 1360
                else:
                    return []
D
dzhwinter 已提交
1361 1362
            else:
                return []
1363
        places = [fluid.CPUPlace()]
1364 1365 1366
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1367
            places.append(core.CUDAPlace(0))
1368 1369
        return places

M
minqiyang 已提交
1370 1371 1372 1373
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1374
                     check_dygraph=True,
1375
                     inplace_atol=None):
1376
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1377
        if self.is_mkldnn_op():
1378
            self.__class__.use_mkldnn = True
C
cc 已提交
1379

Y
Yiqun Liu 已提交
1380
        if self.is_xpu_op():
1381 1382
            self.__class__.use_xpu = True

1383
        places = self._get_places()
Q
qijun 已提交
1384
        for place in places:
1385
            res = self.check_output_with_place(place, atol, no_check_set,
F
feng_shuai 已提交
1386 1387
                                               equal_nan, check_dygraph,
                                               inplace_atol)
1388 1389 1390 1391
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1392
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1393
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1394

P
pangyoki 已提交
1395
    def check_output_customized(self, checker, custom_place=None):
1396
        places = self._get_places()
P
pangyoki 已提交
1397 1398
        if custom_place:
            places.append(custom_place)
1399 1400 1401
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1402
            outs.sort(key=len)
1403 1404
            checker(outs)

1405 1406 1407 1408 1409 1410
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1411 1412
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1413
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1414 1415 1416 1417 1418 1419
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1420
            abs_a = np.abs(a)
1421 1422 1423 1424 1425
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1426 1427
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1428 1429
            else:
                abs_a[abs_a < 1e-3] = 1
1430 1431 1432 1433 1434 1435

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1436 1437 1438
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1439
                    offset, a.flatten()[offset], b.flatten()[offset])
1440 1441 1442

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1443 1444 1445 1446 1447 1448 1449
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1450 1451
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1452
                   output_names,
1453
                   no_grad_set=None,
1454
                   numeric_grad_delta=0.005,
1455
                   in_place=False,
Q
Qiao Longfei 已提交
1456
                   max_relative_error=0.005,
1457
                   user_defined_grads=None,
1458
                   user_defined_grad_outputs=None,
1459
                   check_dygraph=True):
1460
        self._check_grad_helper()
1461
        places = self._get_places()
1462
        for place in places:
1463 1464 1465 1466
            self.check_grad_with_place(
                place, inputs_to_check, output_names, no_grad_set,
                numeric_grad_delta, in_place, max_relative_error,
                user_defined_grads, user_defined_grad_outputs, check_dygraph)
1467 1468 1469 1470 1471 1472 1473 1474 1475

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1476
                              user_defined_grads=None,
1477
                              user_defined_grad_outputs=None,
1478 1479
                              check_dygraph=True,
                              numeric_place=None):
1480
        self.scope = core.Scope()
Q
qijun 已提交
1481
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1482
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1483
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1484

Y
Yiqun Liu 已提交
1485 1486
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1487 1488
            check_dygraph = False

1489 1490 1491 1492
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1493

P
phlrain 已提交
1494 1495 1496
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1497 1498 1499 1500 1501 1502 1503

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1504 1505 1506 1507 1508 1509 1510
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1511

1512 1513 1514
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1515 1516
        if no_grad_set is None:
            no_grad_set = set()
1517 1518
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1519 1520 1521
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1522 1523
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1524

1525 1526 1527 1528 1529 1530 1531 1532
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1533 1534 1535
        if not type(output_names) is list:
            output_names = [output_names]

1536 1537 1538
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1539
        numeric_grads = user_defined_grads or [
1540
            get_numeric_gradient(
1541
                numeric_place,
1542 1543 1544 1545
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1546
                output_names,
1547
                delta=numeric_grad_delta,
C
chengduo 已提交
1548
                in_place=in_place) for input_to_check in inputs_to_check
1549
        ]
1550

1551
        analytic_grads = self._get_gradient(inputs_to_check, place,
1552 1553
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1554

1555 1556
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1557
        fp32_analytic_grads = []
1558 1559 1560
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1561
                max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1562 1563 1564 1565 1566 1567 1568
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1569
                max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1570 1571
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1572

D
Dun 已提交
1573 1574 1575
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1576

1577
        if check_dygraph:
1578 1579 1580
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1581 1582 1583 1584
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1585
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1586 1587
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1605
                          user_defined_grad_outputs=None,
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1647 1648 1649 1650 1651
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1686
                    block.append_op(
1687 1688 1689
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1690
                        attrs=None)
1691
                    loss = block.create_var(
1692 1693 1694
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1695 1696
                        stop_gradient=False,
                        shape=[1])
1697
                    block.append_op(
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1715 1716 1717 1718
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1719 1720 1721 1722 1723
                grad_inputs = paddle.grad(
                    outputs=fluid.layers.utils.flatten(outputs),
                    inputs=fluid.layers.utils.flatten(inputs),
                    grad_outputs=grad_outputs)
                return [grad.numpy() for grad in grad_inputs]
1724

Y
Yu Yang 已提交
1725 1726 1727 1728 1729
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1730
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1731 1732
        return tensor

K
Kexin Zhao 已提交
1733
    @staticmethod
K
Kexin Zhao 已提交
1734 1735
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1736

D
dzhwinter 已提交
1737 1738 1739 1740 1741 1742 1743 1744
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1745 1746 1747 1748 1749
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
1750
                      user_defined_grad_outputs=None,
1751
                      parallel=False):
Y
Yu Yang 已提交
1752
        prog = Program()
1753
        scope = core.Scope()
Y
Yu Yang 已提交
1754
        block = prog.global_block()
1755
        self._append_ops(block)
Y
Yu Yang 已提交
1756

1757
        inputs = self._get_inputs(block)
1758
        outputs = self._get_outputs(block)
1759
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1760

1761
        if user_defined_grad_outputs is None:
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
1802
            inputs = [inputs[name] for name in input_to_check if name in inputs]
1803 1804 1805 1806
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

1807 1808
        if parallel:
            use_cuda = False
1809
            if isinstance(place, fluid.CUDAPlace):
1810
                use_cuda = True
1811 1812 1813 1814
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1815 1816
        return list(
            map(np.array,
1817 1818 1819 1820 1821
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
1835 1836 1837 1838 1839 1840

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")