analysis_predictor.cc 91.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
N
nhzlx 已提交
20
#include <fstream>
21
#include <memory>
22
#include <set>
23
#include <string>
24
#include <utility>
25
#include <vector>
26

W
Wilber 已提交
27
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
28
#include "paddle/fluid/framework/feed_fetch_method.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
30
#include "paddle/fluid/framework/generator.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
36
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/framework/var_type_traits.h"
38
#include "paddle/fluid/framework/version.h"
39
#include "paddle/fluid/inference/analysis/helper.h"
40
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
41
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
42
#include "paddle/fluid/inference/api/helper.h"
43
#include "paddle/fluid/inference/api/infer_context.h"
44
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
45
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
46
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
47
#include "paddle/fluid/inference/api/resource_manager.h"
48
#include "paddle/fluid/inference/utils/io_utils.h"
49
#include "paddle/fluid/inference/utils/model_utils.h"
50
#include "paddle/fluid/inference/utils/singleton.h"
51
#include "paddle/fluid/memory/memcpy.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
53
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
54
#include "paddle/fluid/platform/device_context.h"
55
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
56
#include "paddle/fluid/platform/profiler.h"
57
#include "paddle/phi/api/ext/op_meta_info.h"
58 59
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
60
#include "paddle/phi/common/place.h"
W
Wilber 已提交
61
#include "paddle/phi/core/enforce.h"
62 63
#include "paddle/utils/string/split.h"

64
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
65 66 67 68
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
69

70 71 72 73
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

74 75 76 77
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

78 79 80 81
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

82
#ifdef PADDLE_WITH_TENSORRT
Y
Yan Chunwei 已提交
83
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
84
#include "paddle/fluid/inference/tensorrt/helper.h"
85
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
86 87
#endif

88 89 90 91
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

92 93
namespace paddle {

N
nhzlx 已提交
94
using inference::Singleton;
95
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
96 97
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
98
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
99
#endif
100

101 102
int AnalysisPredictor::clone_num_ = 1;

103 104 105 106
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
107 108
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
109 110 111 112
    return true;
  }
  return false;
}
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

132
phi::Backend ConvertBackend(paddle_infer::PlaceType backend) {
133
  switch (backend) {
134
    case paddle_infer::PlaceType::kGPU:
135 136
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
137
    case paddle_infer::PlaceType::kNPU:
138
      return phi::Backend::NPU;
139
    case paddle_infer::PlaceType::kXPU:
140
      return phi::Backend::XPU;
141
    case paddle_infer::PlaceType::kCPU:
142
      return phi::Backend::CPU;
143 144
    case paddle_infer::PlaceType::kIPU:
      return phi::Backend::IPU;
145 146 147 148 149 150 151
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support backend, we now only support GPU, XPU, "
          "NPU and CPU."));
      return phi::Backend::CPU;
  }
}
152 153
}  // namespace

C
ccrrong 已提交
154
bool PaddleTensorToLoDTensor(const PaddleTensor &pt,
155
                             phi::DenseTensor *t,
156
                             const platform::Place &place) {
157
  framework::DDim ddim = phi::make_ddim(pt.shape);
158 159 160 161 162 163 164
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
165 166
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
167 168 169 170
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }
171 172 173
  // NOTE(Aurelius84): Some kernels support zero shape input
  // without memory holder, we should skip enforce logic.
  bool has_zero_dim = (phi::product(ddim) == 0);
174 175 176
  VLOG(3) << "Found zero dim: " << has_zero_dim
          << " from input with ddim: " << ddim;
  if (!has_zero_dim) {
177 178 179 180 181 182 183 184
    PADDLE_ENFORCE_NOT_NULL(
        input_ptr,
        paddle::platform::errors::Fatal(
            "Cannot convert to LoDTensor because LoDTensor creation failed."));
    PADDLE_ENFORCE_NOT_NULL(
        pt.data.data(),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor is illegal."));
185 186 187 188 189
    PADDLE_ENFORCE_EQ(
        pt.data.length(),
        t->numel() * paddle::experimental::SizeOf(t->dtype()),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor had wrong length."));
190
  }
191 192 193

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
194 195 196 197
    if (input_ptr != nullptr) {
      std::memcpy(
          static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
    }
J
jianghaicheng 已提交
198 199
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
200 201
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
202 203 204 205
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
206
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
207 208
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
209 210
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
211
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
212
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
213
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
214
    auto dst_gpu_place = place;
C
ccrrong 已提交
215 216 217 218 219
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
220 221 222 223 224
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
225 226
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
227
    auto dst_xpu_place = place;
C
ccrrong 已提交
228 229 230 231 232
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
233 234 235 236 237 238 239
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
240 241 242 243 244 245 246 247 248 249
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
250
bool AnalysisPredictor::Init(
251 252
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
253
  VLOG(3) << "Predictor::init()";
254 255
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
256 257
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
258
    platform::EnableProfiler(tracking_device);
259
  } else {
260 261
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
262 263
  }

264
  // no matter with or without MKLDNN
L
luotao1 已提交
265
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
266

267 268 269
  if (!PrepareScope(parent_scope)) {
    return false;
  }
270 271 272

  InitPlace();

273 274 275 276 277 278 279
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

280 281 282
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

283 284 285
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
286
  }
287

288 289 290 291 292 293 294 295 296 297 298 299 300
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
301
        static_cast<phi::GPUContext *>(
302 303 304 305 306 307
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
308
  }
309
#endif
310
  inference::DisplayMemoryInfo(place_, "Init predictor");
311 312
  return true;
}
313

314
void AnalysisPredictor::InitPlace() {
315
  if (config_.use_gpu()) {
C
ccrrong 已提交
316 317
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
318 319
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
320
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
321
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
322
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
323 324
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
325 326
    }
#endif
327
  } else if (config_.use_xpu()) {
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
351 352 353 354 355 356 357 358
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
375 376 377 378 379 380 381
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
382 383 384 385 386 387 388 389 390
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    place_ = paddle::platform::CustomPlace(config_.custom_device_type());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
391
#endif
392 393 394
  } else {
    place_ = paddle::platform::CPUPlace();
  }
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
// Init GPUContext.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
412
          auto *gpu_context = new InferGPUContext(place_);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
          gpu_context->SetAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(place_, gpu_resource->GetStream())
                  .get());
          gpu_context->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());
          gpu_context->SetHostAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(platform::CPUPlace())
                  .get());
          gpu_context->SetZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(place_)
                  .get());
          gpu_context->SetGenerator(
              framework::DefaultCUDAGenerator(place_.GetDeviceId()).get());
          gpu_context->SetHostGenerator(framework::DefaultCPUGenerator().get());

          gpu_context->SetStream(gpu_resource->GetStream());
434
          gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
435
          gpu_context->SetBlasTensorCoreHandle(
436 437 438 439 440 441 442 443
              gpu_resource->GetBlasTensorCoreHandleCreator());
          gpu_context->SetBlasTF32Handle(
              gpu_resource->GetBlasTF32TensorCoreHandleCreator());
          gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
          gpu_context->SetSolverHandle(
              gpu_resource->GetSolverDnHandleCreator());
          gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
          gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDeviceCreator());
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
          gpu_context->SetComputeCapability(
              gpu_resource->GetGpuComputeCapability());
          gpu_context->SetMaxThreadsPerBlock(
              gpu_resource->GetGpuMaxThreadsPerBlock());
          gpu_context->SetMaxThreadsPerMultiProcessor(
              gpu_resource->GetGpuMaxThreadsPerMp());
          gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
          gpu_context->SetMultiProcessors(
              gpu_resource->GetGPUMultiProcessors());
          gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
          gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
          VLOG(1) << "thread id is " << std::this_thread::get_id()
                  << ", stream id is "
                  << reinterpret_cast<void *>(gpu_resource->GetStream())
                  << ", allotor ptr is "
                  << reinterpret_cast<void *>(
                         memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place_, gpu_resource->GetStream())
                             .get());
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
#endif
  // TODO(Inference): Support other backends.
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  } else {
    return nullptr;
  }
  return nullptr;
#else
  // TODO(inference): Support other backends.
  return nullptr;
#endif
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
    paddle::framework::InitDevices();
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
538 539
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
540 541 542 543 544
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
545 546 547 548 549
    if (config_.apply_optim_) {
      VLOG(3)
          << "apply_optim is enabled, will call OptimizeInferenceProgram().";
      OptimizeInferenceProgram();
    }
550 551 552 553 554 555 556 557
  }

  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}

bool AnalysisPredictor::CreateExecutor() {
558 559 560
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
580 581
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
582 583 584 585 586 587 588 589 590
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
591 592
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
593 594
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
595 596 597
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
598 599 600
  }
}

601
bool AnalysisPredictor::PrepareExecutor() {
602
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
603 604 605 606 607
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
608 609
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
610 611
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
612

613 614 615
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
616

617 618 619
  return true;
}

620
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
657 658 659 660 661 662 663
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
700 701 702 703 704 705
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
706 707 708 709 710 711 712 713 714 715 716
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
717 718 719 720 721
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
778 779
      static_cast<bool>(fin.is_open()),
      true,
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

852 853
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
854 855 856 857 858 859 860 861 862 863 864 865
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
866
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
867 868 869
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
870 871 872
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
873 874
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
875 876 877
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
878 879 880
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
881
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
882
  }
883 884 885
  platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
      config_.mkldnn_cache_capacity_);

886 887 888 889 890 891
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
892 893 894 895
  if (config_.mkldnn_cache_capacity_ > 0 &&
      static_cast<platform::MKLDNNDeviceContext *>(
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
896 897 898 899 900 901 902 903
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
904 905 906
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
907 908 909 910
  }
#endif
}

911 912 913
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
914
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
915 916 917
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
918
  VLOG(3) << "Predictor::predict";
919 920 921 922
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
923 924 925
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
926 927
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
928
    return false;
929
  }
M
Michal Gallus 已提交
930

931 932 933 934 935 936 937 938 939
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

940 941 942
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
943

944 945 946 947
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
948
  }
Y
Yan Chunwei 已提交
949

M
minqiyang 已提交
950
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
951

Y
Yan Chunwei 已提交
952 953 954 955 956
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
957 958 959
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
960
  tensor_array_batch_cleaner_.ResetNoTensorVars();
961 962 963 964

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
965 966
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
967
#endif
968
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
969 970 971 972
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
973
#endif
974 975
  return true;
}
976

977 978
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
979
  VLOG(3) << "Predictor::set_feed";
980 981 982 983 984 985 986 987 988 989
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
990
    phi::DenseTensor *input = &feed_tensors_[i];
991
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
992 993 994
      return false;
    }
    int idx = -1;
995
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
996 997
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
998 999
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
1000 1001
      }
      idx = feed_names_[name];
1002
    } else {
R
Ruibiao Chen 已提交
1003
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
1004
    }
1005
    framework::SetFeedVariable(scope, *input, "feed", idx);
1006 1007 1008 1009 1010
  }
  return true;
}

template <typename T>
1011
void AnalysisPredictor::GetFetchOne(const phi::DenseTensor &fetch,
1012 1013
                                    PaddleTensor *output) {
  // set shape.
1014
  auto shape = phi::vectorize(fetch.dims());
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1032
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1033 1034
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1035
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1036
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1037 1038
        static_cast<size_t>(idx),
        i,
1039
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1040 1041
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1042
            i));
1043
    framework::FetchType &fetch_var =
1044
        framework::GetFetchVariable(*scope, "fetch", idx);
1045
    auto &fetch = PADDLE_GET(phi::DenseTensor, fetch_var);
1046
    auto type = framework::TransToProtoVarType(fetch.dtype());
1047
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1048
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1049
    if (type == framework::proto::VarType::FP32) {
1050 1051
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1052
    } else if (type == framework::proto::VarType::INT64) {
1053 1054
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1055 1056 1057
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1058 1059 1060
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1061
    } else {
1062 1063
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1064 1065
    }
  }
Y
Yan Chunwei 已提交
1066 1067
  return true;
}
1068

1069
void AnalysisPredictor::PrepareArgument() {
1070
  argument_.SetUseGPU(config_.use_gpu());
1071
  argument_.SetUseFcPadding(config_.use_fc_padding());
1072
  argument_.SetGPUDeviceId(config_.gpu_device_id());
1073
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
1074
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
1075
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1076
  // Analyze inference_program
1077
  argument_.SetPredictorID(predictor_id_);
1078
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
1079 1080
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1081
  } else {
C
ccrrong 已提交
1082 1083
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1084 1085
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1086

1087 1088
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1089
  }
1090 1091
  // For JITLayer
  argument_.SetSkipLoadParams(config_.skip_load_params_);
1092

1093
  argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
1094
  argument_.SetTensorRtUseOSS(config_.trt_use_varseqlen_);
1095
  argument_.SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
1096 1097
  argument_.SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_.SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
1098 1099 1100 1101 1102
  argument_.SetMinInputShape(config_.min_input_shape_);
  argument_.SetMaxInputShape(config_.max_input_shape_);
  argument_.SetOptimInputShape(config_.optim_input_shape_);
  argument_.SetTensorRtTunedDynamicShape(
      config_.tuned_tensorrt_dynamic_shape());
1103
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1104
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1105 1106 1107
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
1108
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
1109
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
1110 1111
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
1112
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
1113
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
1114
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
1115 1116 1117
    argument_.SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_.SetTensorRtAllowBuildAtRuntime(
        config_.trt_allow_build_at_runtime());
1118
    argument_.SetTensorRtUseInspector(config_.trt_use_inspector_);
1119
    argument_.SetTrtEngineMemorySharing(config_.trt_engine_memory_sharing());
W
Wojciech Uss 已提交
1120
  }
1121

D
denglin-github 已提交
1122 1123 1124 1125
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
D
denglin-github 已提交
1126 1127 1128 1129 1130 1131 1132 1133
    argument_.SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_);
    argument_.SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_);
    argument_.SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_);
    argument_.SetDlnneDisableNodesByOutputs(
        config_.dlnne_disable_nodes_by_outputs_);
    argument_.SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_);
    argument_.SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_);
    argument_.SetDlnnePrecisionMode(config_.dlnne_precision_mode_);
D
denglin-github 已提交
1134 1135
  }

石晓伟 已提交
1136
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
1137 1138
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
1139 1140 1141
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
1142 1143 1144
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
1145 1146 1147 1148 1149
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
1150
    argument_.SetXpuDeviceId(config_.xpu_device_id_);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    // NNAdapter related
    argument_.SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_.SetNNAdapterDeviceNames(
        config_.NNAdapter().nnadapter_device_names);
    argument_.SetNNAdapterContextProperties(
        config_.NNAdapter().nnadapter_context_properties);
    argument_.SetNNAdapterModelCacheDir(
        config_.NNAdapter().nnadapter_model_cache_dir);
    argument_.SetNNAdapterSubgraphPartitionConfigBuffer(
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
    argument_.SetNNAdapterSubgraphPartitionConfigPath(
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
    argument_.SetNNAdapterModelCacheToken(buffer_keys);
    argument_.SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1171 1172 1173
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1174
#ifdef PADDLE_WITH_IPU
J
jianghaicheng 已提交
1175 1176
  argument_.SetUseIpu(config_.use_ipu_);
  argument_.SetIpuDeviceNum(config_.ipu_device_num());
1177
  argument_.SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
J
jianghaicheng 已提交
1178 1179
  argument_.SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_.SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
1180 1181 1182 1183 1184
  argument_.SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_.SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_.SetIpuAvailableMemoryProportion(
      config_.ipu_available_memory_proportion_);
  argument_.SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
1185 1186
  argument_.SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_);
  argument_.SetIpuCustomPatterns(config_.ipu_custom_patterns_);
1187
#endif
J
jianghaicheng 已提交
1188

1189 1190 1191
  argument_.SetUseNpu(config_.use_npu_);
  argument_.SetNPUDeviceId(config_.npu_device_id());

1192
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1193
    LOG(INFO) << "MKLDNN is enabled";
1194 1195 1196
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

1197 1198 1199 1200 1201 1202 1203 1204
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1205 1206 1207 1208
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
B
baoachun 已提交
1209 1210 1211 1212 1213 1214 1215

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
    argument_.SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_.SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_.SetQuantVarScales({});
  }
1216 1217
#endif

1218
  auto passes = config_.pass_builder()->AllPasses();
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
              << ", we will use a new PassStrategy. Note that only the GPU "
                 "backend is supported for now.";
    passes.clear();
    if (config_.tensorrt_engine_enabled()) {
      for (const auto &pass : kTrtLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    } else if (config_.use_gpu()) {
      for (const auto &pass : kGpuLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    }

    const auto &deleted_passes = config_.pass_builder()->GetAllDeletedPasses();
    for (const auto &it : deleted_passes) {
      auto iterator = std::find(passes.begin(), passes.end(), it);
      if (iterator != passes.end()) {
        passes.erase(iterator);
      }
    }

    if (config_.ir_debug_) {
      auto it = std::begin(passes);
      while (it != std::end(passes)) {
        if (*it != "graph_viz_pass") {
          it = passes.insert(it + 1, "graph_viz_pass");
        } else {
          ++it;
        }
      }
    }
  }
Y
Yan Chunwei 已提交
1253 1254 1255 1256
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
1257
  argument_.SetDisableLogs(config_.glog_info_disabled());
1258
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
1259
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
1260
  argument_.SetScopeNotOwned(scope_.get());
1261

1262
  // mixed precison.
1263
  argument_.SetModelPrecision(static_cast<int>(model_precision_));
1264
  argument_.SetMixedBlackList(config_.mixed_black_list_);
1265 1266 1267 1268 1269
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1280 1281
  Analyzer().Run(&argument_);

1282
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1283 1284
      argument_.scope_valid(),
      true,
1285
      platform::errors::InvalidArgument("The argument scope should be valid."));
1286 1287
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
1288
  inference_program_.reset(
1289 1290 1291 1292
      new framework::ProgramDesc(argument_.ir_analyzed_program()),
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
1293
#ifdef PADDLE_WITH_TENSORRT
W
Wilber 已提交
1294 1295 1296 1297
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1298
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1299
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1300
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1312 1313 1314
#endif
        delete prog;
      });
1315 1316 1317 1318
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
1319
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1320
}
1321 1322

template <>
1323 1324 1325
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1326 1327
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
1328 1329 1330 1331
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
1332
  VLOG(3) << "create AnalysisConfig";
1333
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1334 1335
      config.is_valid(),
      true,
1336 1337
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1338

1339 1340 1341 1342
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1343
                 []() { inference::RegisterAllCustomOperator(); });
1344

1345
  if (config.use_gpu()) {
1346 1347 1348 1349 1350 1351
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1352 1353
          config.memory_pool_init_size_mb(),
          0.f,
1354 1355 1356
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1357 1358
          config.gpu_device_id(),
          0,
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
1372

1373 1374 1375 1376 1377 1378 1379
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
      }

1380 1381 1382 1383 1384 1385 1386 1387 1388
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

W
Wilber 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
      // support set flags from enviorment.
      const platform::ExportedFlagInfoMap &env_map =
          platform::GetExportedFlagInfoMap();
      std::ostringstream os;
      os << "--tryfromenv=";
      for (auto &pair : env_map) {
        os << pair.second.name << ",";
      }
      auto tryfromenv_str = os.str();
      gflags.push_back(os.str().substr(0, tryfromenv_str.size() - 1));

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
1415 1416 1417 1418 1419 1420
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
1421 1422 1423 1424
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1425 1426
  // Each config can only be used for one predictor.
  config.SetInValid();
1427 1428
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1429 1430 1431 1432
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1433 1434 1435 1436 1437
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1438 1439
    return nullptr;
  }
1440

G
Gabor Buella 已提交
1441
  return predictor;
1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1456
void AnalysisPredictor::PrepareFeedFetch() {
1457 1458 1459
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1460
  CreateFeedFetchVar(sub_scope_);
1461 1462
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
R
Ruibiao Chen 已提交
1463
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1464 1465 1466 1467 1468
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1469
      idx2feeds_[idx] = op->Output("Out")[0];
1470
    } else if (op->Type() == "fetch") {
R
Ruibiao Chen 已提交
1471
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1472 1473
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1474
      }
Y
Yan Chunwei 已提交
1475
      fetches_[idx] = op;
N
nhzlx 已提交
1476
      idx2fetches_[idx] = op->Input("X")[0];
1477 1478 1479 1480
    }
  }
}

1481
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1482 1483 1484
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1485
  auto *var = scope->Var("feed");
1486
  var->GetMutable<framework::FeedList>();
1487
  var = scope->Var("fetch");
1488
  var->GetMutable<framework::FetchList>();
1489 1490
}

N
nhzlx 已提交
1491 1492 1493 1494 1495 1496 1497 1498
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1499 1500 1501 1502 1503 1504
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1505 1506 1507
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1508 1509 1510 1511 1512
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1544 1545 1546 1547 1548 1549 1550 1551
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1552 1553
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1554
  framework::Scope *scope;
1555
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1556 1557 1558 1559 1560 1561 1562 1563
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1564
  PADDLE_ENFORCE_NOT_NULL(
1565
      scope->FindVar(name),
1566
      platform::errors::PreconditionNotMet(
1567
          "The variable named %s is not found in the scope of the executor.",
1568
          name));
1569 1570
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1571 1572
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1573 1574
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1575 1576 1577 1578
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1579
  } else if (platform::is_xpu_place(place_)) {
1580 1581 1582 1583 1584 1585 1586 1587
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1588
      auto xpu_place = place_;
1589 1590
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1591
  } else if (platform::is_npu_place(place_)) {
1592
    auto npu_place = place_;
W
Wilber 已提交
1593
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1594 1595 1596 1597 1598 1599
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1600
  } else {
1601
    auto gpu_place = place_;
N
nhzlx 已提交
1602 1603
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1604 1605 1606 1607 1608
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1609
  framework::Scope *scope;
1610
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1611 1612 1613 1614 1615 1616 1617 1618
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1619
  PADDLE_ENFORCE_NOT_NULL(
1620
      scope->FindVar(name),
1621
      platform::errors::PreconditionNotMet(
1622
          "The variable named %s is not found in the scope of the executor.",
1623
          name));
1624 1625
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1626 1627
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1628 1629
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1630 1631 1632 1633
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1634
  } else if (platform::is_xpu_place(place_)) {
1635 1636 1637 1638 1639 1640 1641 1642
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1643
      auto xpu_place = place_;
1644 1645
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1646
  } else if (platform::is_npu_place(place_)) {
1647
    auto npu_place = place_;
W
Wilber 已提交
1648
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1649 1650 1651 1652 1653 1654
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1655
  } else {
1656
    auto gpu_place = place_;
N
nhzlx 已提交
1657 1658
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1659 1660 1661 1662
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1663
  inference::DisplayMemoryInfo(place_, "before run");
1664
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1675 1676 1677
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
1678
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1700
  executor_->Run();
1701
  inference::DisplayMemoryInfo(place_, "after run");
1702 1703 1704 1705 1706

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1707
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1708
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1709
  tensor_array_batch_cleaner_.ResetTensorArray();
1710 1711 1712 1713

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1714 1715 1716
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
1717 1718 1719
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
1720
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1721 1722 1723 1724 1725
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
1726 1727 1728
  return true;
}

W
Wilber 已提交
1729 1730
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
    ResourceManager::Instance().GpuResourceReBindStream(predictor_stream_,
                                                        stream);
    predictor_stream_ = stream;

    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    auto *dev_ctx =
        static_cast<InferGPUContext *>(dev_ctxs->at(place_).get().get());
    dev_ctx->SetStream(stream);
  }

W
Wilber 已提交
1756 1757 1758 1759
  return ZeroCopyRun();
}
#endif

1760 1761 1762 1763 1764 1765
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1766
    auto gpu_place = place_;
L
Leo Chen 已提交
1767
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(gpu_place));
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
1779
    if (!var->IsType<phi::DenseTensor>()) {
1780 1781
      continue;
    }
1782 1783
    auto tensor = var->Get<phi::DenseTensor>();
    framework::DDim dim = tensor.dims();
1784 1785 1786
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

    // We need collect value range for shape tensor for Paddle-TRT's use.
    // To be noticed, this method to identify all shape tensors is based on
    // assumption that all shape tensors in the model have numbers <= 7.
    // This is a simple method to identify all shape tensors with some
    // mistakes, but it doesn't matter.
    auto is_shape_tensor = tensor.numel() <= 7 && tensor.numel() >= 1;
    if (tensor.dtype() == paddle::experimental::DataType::INT32 &&
        is_shape_tensor) {
      std::vector<int> int32_host(tensor.numel());
      if (tensor.place() == platform::CPUPlace()) {
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CPUPlace(),
                             tensor.data<int>(),
                             tensor.numel() * sizeof(int));
      } else if (tensor.place() == platform::CUDAPlace()) {
#if defined(PADDLE_WITH_CUDA)
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CUDAPlace(),
                             tensor.data<int>(),
                             tensor.numel() * sizeof(int),
                             nullptr);
#endif
      }
      shape_tensor_value_[name].emplace_back(int32_host);
    }
1815 1816 1817 1818 1819 1820 1821
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
  std::map<std::string, std::vector<int32_t>> min_values;
  std::map<std::string, std::vector<int32_t>> max_values;
  std::map<std::string, std::vector<int32_t>> opt_values;

  auto extract_min_max_opt =
      [](std::map<std::string, std::vector<int32_t>> &min_data,
         decltype(min_data) max_data,
         decltype(min_data) opt_data,
         decltype(shape_info_) shape_data) {
        for (auto it : shape_data) {
          auto name = it.first;
          auto shapes = it.second;

          std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

          auto ShapeMaxFreq =
              [](const std::map<int32_t, int32_t> &m) -> int32_t {
            std::vector<std::pair<int32_t, int32_t>> counter;
            for (auto &it : m) counter.push_back(it);
            std::sort(counter.begin(),
                      counter.end(),
                      [](std::pair<int32_t, int32_t> &a,
                         std::pair<int32_t, int32_t> &b) {
                        return a.second > b.second;
                      });
            return counter[0].first;
          };

          for (size_t d = 0; d < shapes[0].size(); ++d) {
            std::map<int32_t, int32_t> counter;
            for (size_t i = 0; i < shapes.size(); ++i) {
              counter[shapes[i][d]] += 1;
              if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
              if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
            }
            opt_shape[d] = ShapeMaxFreq(counter);
          }
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
          min_data[name] = min_shape;
          max_data[name] = max_shape;
          opt_data[name] = opt_shape;
        }
      };
  extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_);
  extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_);

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes,
                                     max_shapes,
                                     opt_shapes,
                                     min_values,
                                     max_values,
                                     opt_values);
1877 1878
}

1879 1880
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
1881
  std::string filename;
1882 1883
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
1884
  } else if (!config_.prog_file().empty()) {
1885 1886 1887
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
1888
    filename = config_.prog_file();
1889
  } else {
1890
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
1891 1892 1893 1894
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
1895
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
1896 1897
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
1898
        config_.params_file());
1899 1900
    return false;
  }
1901 1902 1903

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
1904
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
1905 1906 1907
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
1908
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1909 1910
        static_cast<bool>(fin.is_open()),
        true,
1911 1912 1913
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
1914 1915 1916 1917 1918 1919 1920 1921
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
1922
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
1923
  }
1924 1925 1926 1927 1928 1929
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
1930 1931
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

1953
      if (!config_.params_file().empty()) {
1954 1955 1956 1957 1958 1959
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1960
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1961 1962 1963 1964 1965
        op->CheckAttrs();
      }
    }
  }

1966
  if (!config_.params_file().empty()) {
1967 1968 1969 1970 1971 1972
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1973
    op->SetAttr("file_path", {config_.params_file()});
1974 1975 1976 1977
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1978
  framework::NaiveExecutor e(place_);
1979 1980 1981 1982
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1983 1984
  return true;
}
1985

1986 1987 1988 1989 1990
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1991 1992 1993 1994 1995 1996 1997 1998 1999
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
2000
      if (variable != nullptr && variable->IsType<phi::DenseTensor>() &&
2001 2002
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
2003
        auto *t = variable->GetMutable<phi::DenseTensor>();
2004 2005 2006 2007 2008 2009
        t->clear();
      }
    }
  }
}

2010
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2011
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
2012 2013
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
2014 2015
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
2016 2017 2018
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
2019
      std::string engine_name = PADDLE_GET_CONST(
2020
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
2021
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
2022 2023 2024 2025
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
2026 2027
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
2028
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
2029
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
2030 2031
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
2032 2033 2034
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
2035

N
nhzlx 已提交
2036
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
2037 2038 2039
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
2040

N
nhzlx 已提交
2041 2042 2043 2044 2045
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
2046
      std::string calibration_table_data_path =
N
nhzlx 已提交
2047 2048 2049 2050
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
2051 2052 2053 2054 2055

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
2056 2057 2058 2059
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
2060
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
2061 2062
  return true;
}
N
nhzlx 已提交
2063
#endif
N
nhzlx 已提交
2064

2065
AnalysisPredictor::~AnalysisPredictor() {
2066
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2067
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
2068 2069
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
2070 2071
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
2072
#endif
2073
  if (config_.with_profile_) {
2074 2075 2076 2077
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
      for (auto iter = scope_key_set.begin(); iter != scope_key_set.end();
           iter++) {
        framework::global_transfer_data_cache().erase(*iter);
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
2087 2088
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
2089

2090 2091 2092 2093 2094 2095
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
2096

2097 2098 2099
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
2100 2101 2102 2103 2104
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
W
Wilber 已提交
2105 2106 2107
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
2108
  device_contexts_.clear();
2109 2110 2111 2112 2113 2114 2115

#ifdef PADDLE_WITH_TENSORRT
  if (config_.trt_engine_memory_sharing()) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .releaseContextMemory(predictor_id_);
  }
#endif
2116 2117
}

2118
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
Y
Yan Chunwei 已提交
2119
  std::lock_guard<std::mutex> lk(clone_mutex_);
2120
  auto *x = new AnalysisPredictor(config_);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
  x->status_is_cloned_ = true;
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2132
  x->Init(scope_, inference_program_);
2133
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
2134 2135 2136
  return std::unique_ptr<PaddlePredictor>(x);
}

2137
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2138 2139 2140
  return inference_program_->Proto()->SerializeAsString();
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
2180
template <>
2181 2182
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2183
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2184 2185
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2186 2187
}

2188
}  // namespace paddle
2189

2190
#ifdef PADDLE_WITH_TENSORRT
2191
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2192 2193 2194
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
2195 2196
USE_TRT_CONVERTER(elementwise_min_weight);
USE_TRT_CONVERTER(elementwise_max_weight);
S
shentanyue 已提交
2197
USE_TRT_CONVERTER(elementwise_pow_weight);
2198 2199 2200 2201 2202 2203 2204
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
2205
USE_TRT_CONVERTER(transpose);
2206
USE_TRT_CONVERTER(transpose2);
2207
USE_TRT_CONVERTER(flatten);
2208
USE_TRT_CONVERTER(flatten_contiguous_range);
2209
USE_TRT_CONVERTER(matmul);
2210
USE_TRT_CONVERTER(matmul_v2);
2211
USE_TRT_CONVERTER(bmm);
2212 2213
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
Z
zhupengyang 已提交
2214 2215
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
2216 2217 2218 2219 2220 2221 2222 2223 2224
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2225 2226
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2227
USE_TRT_CONVERTER(split);
2228 2229
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2230
USE_TRT_CONVERTER(leaky_relu);
2231 2232
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
L
LielinJiang 已提交
2233
USE_TRT_CONVERTER(silu);
2234
USE_TRT_CONVERTER(group_norm);
2235
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2236 2237 2238
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2239
USE_TRT_CONVERTER(skip_layernorm);
2240
USE_TRT_CONVERTER(slice);
2241
USE_TRT_CONVERTER(scale);
2242
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2243
USE_TRT_CONVERTER(clip);
2244
USE_TRT_CONVERTER(gather);
2245
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2246
USE_TRT_CONVERTER(yolo_box);
2247
USE_TRT_CONVERTER(yolo_box_head);
2248
USE_TRT_CONVERTER(arg_max);
2249
USE_TRT_CONVERTER(roi_align);
2250
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2251
USE_TRT_CONVERTER(multiclass_nms);
2252
USE_TRT_CONVERTER(multiclass_nms3);
2253
USE_TRT_CONVERTER(nearest_interp);
2254
USE_TRT_CONVERTER(nearest_interp_v2);
2255
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2256
USE_TRT_CONVERTER(reshape);
2257
USE_TRT_CONVERTER(reshape2);
2258 2259
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2260
USE_TRT_CONVERTER(reduce_mean);
W
wenbin 已提交
2261
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2262 2263
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2264
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2265
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2266
USE_TRT_CONVERTER(pool3d)
2267 2268
#ifdef _WIN32
#else
2269
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
2270 2271
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
#endif
2272
USE_TRT_CONVERTER(preln_skip_layernorm)
2273 2274
USE_TRT_CONVERTER(preln_residual_bias)
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2275
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2276
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2277 2278
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2279
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2280
USE_TRT_CONVERTER(cast)
2281 2282
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2283
USE_TRT_CONVERTER(equal);
2284 2285
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2286 2287
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2288 2289
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2290
USE_TRT_CONVERTER(fill_constant)
2291
USE_TRT_CONVERTER(fused_token_prune)
W
wenbin 已提交
2292
USE_TRT_CONVERTER(layernorm_shift_partition)
W
wenbin 已提交
2293
USE_TRT_CONVERTER(preln_layernorm_shift_partition)
W
Wang Bojun 已提交
2294
USE_TRT_CONVERTER(merge_layernorm)
W
weishengying 已提交
2295 2296
USE_TRT_CONVERTER(generic_plugin_creater)
USE_TRT_CONVERTER(custom_plugin_creater)
2297
USE_TRT_CONVERTER(lookup_table)
2298
USE_TRT_CONVERTER(expand_v2)
2299 2300 2301 2302
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2303
#endif
W
Wilber 已提交
2304 2305 2306 2307 2308 2309

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2320 2321 2322 2323
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2324 2325 2326 2327 2328 2329 2330 2331 2332
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2333 2334 2335 2336
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2337 2338 2339 2340 2341
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2342 2343 2344 2345

std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2346 2347

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2348
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2349 2350 2351 2352 2353 2354 2355
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2356
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2357 2358 2359 2360
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2361 2362
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2363 2364 2365 2366 2367 2368 2369 2370
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2371 2372
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2373 2374
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2409 2410 2411 2412
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2413 2414 2415 2416 2417
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
2418
                             paddle_infer::PlaceType backend,
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
2444 2445
      size,
      1UL,
W
Wilber 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
2464 2465
      idx,
      preds_.size() + 1,
W
Wilber 已提交
2466
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
2467 2468
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
2469 2470 2471 2472 2473 2474 2475
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
W
Wilber 已提交
2496

2497 2498 2499 2500 2501 2502
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
2518 2519 2520 2521 2522
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
2523
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
2533
}  // namespace experimental
W
Wilber 已提交
2534
}  // namespace paddle_infer