Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
aee4f8ab
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aee4f8ab
编写于
9月 20, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
9月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle-TRT] matmul_v2 support (#44918)
* Support matmul_v2 in PaddleTensorRT
上级
da10fb3b
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
333 addition
and
0 deletion
+333
-0
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/convert/matmul_v2_op.cc
paddle/fluid/inference/tensorrt/convert/matmul_v2_op.cc
+118
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+16
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_matmul_v2.py
...ests/unittests/ir/inference/test_trt_convert_matmul_v2.py
+197
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
aee4f8ab
...
...
@@ -2107,6 +2107,7 @@ USE_TRT_CONVERTER(transpose2);
USE_TRT_CONVERTER
(
flatten
);
USE_TRT_CONVERTER
(
flatten_contiguous_range
);
USE_TRT_CONVERTER
(
matmul
);
USE_TRT_CONVERTER
(
matmul_v2
);
USE_TRT_CONVERTER
(
conv2d
);
USE_TRT_CONVERTER
(
relu
);
USE_TRT_CONVERTER
(
exp
);
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
aee4f8ab
...
...
@@ -3,6 +3,7 @@ list(
APPEND
CONVERT_FILES
matmul_op.cc
matmul_v2_op.cc
conv2d_op.cc
fc_op.cc
pool2d_op.cc
...
...
paddle/fluid/inference/tensorrt/convert/matmul_v2_op.cc
0 → 100644
浏览文件 @
aee4f8ab
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/matmul_op_int8_plugin.h"
namespace
paddle
{
namespace
framework
{
class
Scope
;
namespace
proto
{
class
OpDesc
;
}
// namespace proto
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
/*
* MatMulV2Op, IMatrixMultiplyLayer in TRT. This Layer doesn't has weights.
*/
class
MatMulV2OpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a fluid matmul_v2 op to tensorrt matmul layer "
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
// Declare inputs
auto
*
input1
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
*
input2
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Y"
)[
0
]);
nvinfer1
::
Dims
dims_x
=
input1
->
getDimensions
();
nvinfer1
::
Dims
dims_y
=
input2
->
getDimensions
();
bool
transpose_X
=
PADDLE_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"trans_x"
));
bool
transpose_Y
=
PADDLE_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"trans_y"
));
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
nvinfer1
::
MatrixOperation
matrix_operation_X
=
transpose_X
?
nvinfer1
::
MatrixOperation
::
kTRANSPOSE
:
nvinfer1
::
MatrixOperation
::
kNONE
;
nvinfer1
::
MatrixOperation
matrix_operation_Y
=
transpose_Y
?
nvinfer1
::
MatrixOperation
::
kTRANSPOSE
:
nvinfer1
::
MatrixOperation
::
kNONE
;
int
one_num
=
0
;
nvinfer1
::
ITensor
*
new_shape_tensor
=
nullptr
;
if
(
dims_x
.
nbDims
<
dims_y
.
nbDims
)
{
one_num
=
dims_y
.
nbDims
-
dims_x
.
nbDims
;
new_shape_tensor
=
Shape
(
input1
);
std
::
vector
<
int32_t
>
one_vec
(
one_num
,
1
);
auto
*
one_tensor
=
Add1DConstantLayer
(
one_vec
);
new_shape_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
one_tensor
,
new_shape_tensor
});
auto
*
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
input1
);
reshape_layer
->
setInput
(
1
,
*
new_shape_tensor
);
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
MatrixMultiply
,
*
reshape_layer
->
getOutput
(
0
),
matrix_operation_X
,
*
input2
,
matrix_operation_Y
);
}
else
if
(
dims_x
.
nbDims
>
dims_y
.
nbDims
)
{
one_num
=
dims_x
.
nbDims
-
dims_y
.
nbDims
;
new_shape_tensor
=
Shape
(
input2
);
std
::
vector
<
int32_t
>
one_vec
(
one_num
,
1
);
auto
*
one_tensor
=
Add1DConstantLayer
(
one_vec
);
new_shape_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
one_tensor
,
new_shape_tensor
});
auto
*
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
input2
);
reshape_layer
->
setInput
(
1
,
*
new_shape_tensor
);
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
MatrixMultiply
,
*
input1
,
matrix_operation_X
,
*
reshape_layer
->
getOutput
(
0
),
matrix_operation_Y
);
}
else
{
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
MatrixMultiply
,
*
input1
,
matrix_operation_X
,
*
input2
,
matrix_operation_Y
);
}
VLOG
(
3
)
<<
"Convert a fluid matmul_v2_op_float to TensorRT "
;
RreplenishLayerAndOutput
(
layer
,
"matmul_v2_op"
,
{
output_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
matmul_v2
,
MatMulV2OpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
aee4f8ab
...
...
@@ -326,6 +326,20 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if
(
op_type
==
"matmul_v2"
)
{
if
(
!
with_dynamic_shape
)
{
return
false
;
}
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
VLOG
(
3
)
<<
"The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass."
;
return
false
;
}
return
true
;
}
if
(
op_type
==
"matmul"
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
...
...
@@ -2081,6 +2095,7 @@ struct SimpleOpTypeSetTeller : public Teller {
std
::
unordered_set
<
std
::
string
>
int8_teller_set
{
"mul"
,
"matmul"
,
"matmul_v2"
,
"conv2d"
,
"conv2d_fusion"
,
"pool2d"
,
...
...
@@ -2190,6 +2205,7 @@ struct SimpleOpTypeSetTeller : public Teller {
std
::
unordered_set
<
std
::
string
>
teller_set
{
"mul"
,
"matmul"
,
"matmul_v2"
,
"conv2d"
,
"conv2d_fusion"
,
"pool2d"
,
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_matmul_v2.py
0 → 100644
浏览文件 @
aee4f8ab
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
import
os
class
TrtConvertMatmulTest_dynamic
(
TrtLayerAutoScanTest
):
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
batch
in
[
10
,
11
,
12
,
13
,
14
,
15
]:
for
trans_x
in
[
False
]:
for
trans_y
in
[
False
]:
input1_shape
=
[
batch
,
64
,
350
,
75
]
input2_shape
=
[
75
,
25
]
dics
=
[{
"trans_x"
:
trans_x
,
"trans_y"
:
trans_y
,
}]
ops_config
=
[{
"op_type"
:
"matmul_v2"
,
"op_inputs"
:
{
"X"
:
[
"input1_data"
],
"Y"
:
[
"input2_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input1_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input1_shape
)),
"input2_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input2_shape
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input1_data"
:
[
10
,
64
,
350
,
75
],
"input2_data"
:
[
75
,
25
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input1_data"
:
[
100
,
64
,
350
,
75
],
"input2_data"
:
[
75
,
25
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input1_data"
:
[
15
,
64
,
350
,
75
],
"input2_data"
:
[
75
,
25
]
}
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# The output has little diff between gpu and trt in CI-Windows-Inference
tol_fp32
=
1e-5
tol_half
=
1e-5
if
(
os
.
name
==
'nt'
):
tol_fp32
=
1e-3
tol_half
=
1e-3
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
tol_fp32
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
tol_half
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
class
TrtConvertMatmulTest_dynamic2
(
TrtLayerAutoScanTest
):
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
batch
in
[
10
,
11
,
12
,
13
,
14
,
15
]:
for
trans_x
in
[
False
]:
for
trans_y
in
[
False
]:
input1_shape
=
[
60
,
40
]
input2_shape
=
[
batch
,
40
,
90
]
dics
=
[{
"trans_x"
:
trans_x
,
"trans_y"
:
trans_y
,
}]
ops_config
=
[{
"op_type"
:
"matmul_v2"
,
"op_inputs"
:
{
"X"
:
[
"input1_data"
],
"Y"
:
[
"input2_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input1_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input1_shape
)),
"input2_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input2_shape
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input1_data"
:
[
60
,
40
],
"input2_data"
:
[
10
,
40
,
90
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input1_data"
:
[
60
,
40
],
"input2_data"
:
[
20
,
40
,
90
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input1_data"
:
[
60
,
40
],
"input2_data"
:
[
15
,
40
,
90
]
}
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# The output has little diff between gpu and trt in CI-Windows-Inference
tol_fp32
=
1e-5
tol_half
=
1e-5
if
(
os
.
name
==
'nt'
):
tol_fp32
=
1e-3
tol_half
=
1e-3
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
tol_fp32
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
tol_half
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录