test_transpose_op.py 19.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xzl 已提交
15
import unittest
16 17

import gradient_checker
X
xzl 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
20
from eager_op_test import OpTest, convert_float_to_uint16
21

22
import paddle
23
import paddle.fluid as fluid
24
import paddle.fluid.core as core
25
from paddle.fluid import Program, program_guard
X
xzl 已提交
26

27
paddle.enable_static()
X
xzl 已提交
28

S
seemingwang 已提交
29

30
class TestTransposeOp(OpTest):
X
xzl 已提交
31
    def setUp(self):
32
        self.init_op_type()
33
        self.initTestCase()
H
hong 已提交
34
        self.python_api = paddle.transpose
35
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
36 37 38 39
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
40
        self.outputs = {
41
            'XShape': np.random.random(self.shape).astype("float64"),
42
            'Out': self.inputs['X'].transpose(self.axis),
43
        }
44

45 46 47 48
    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

49
    def test_check_output(self):
50
        self.check_output(no_check_set=['XShape'])
51 52

    def test_check_grad(self):
53
        self.check_grad(['X'], 'Out')
54 55

    def initTestCase(self):
Z
zhupengyang 已提交
56
        self.shape = (3, 40)
57 58 59
        self.axis = (1, 0)


60 61
class TestCase0(TestTransposeOp):
    def initTestCase(self):
62 63
        self.shape = (100,)
        self.axis = (0,)
64 65


66 67
class TestCase1(TestTransposeOp):
    def initTestCase(self):
Z
zhupengyang 已提交
68
        self.shape = (3, 4, 10)
69 70 71 72 73 74 75 76
        self.axis = (0, 2, 1)


class TestCase2(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)

X
xzl 已提交
77

78 79 80 81
class TestCase3(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
X
xzl 已提交
82 83


84 85 86 87
class TestCase4(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
X
xzl 已提交
88 89


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
class TestCase5(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 16, 96)
        self.axis = (0, 2, 1)


class TestCase6(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 12, 16)
        self.axis = (3, 1, 2, 0)


class TestCase7(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 2, 16)
        self.axis = (0, 1, 3, 2)


108 109 110 111 112 113 114 115 116 117
class TestCase8(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6, 7)


class TestCase9(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
118 119


120 121 122 123 124 125
class TestCase_ZeroDim(TestTransposeOp):
    def initTestCase(self):
        self.shape = ()
        self.axis = ()


126 127 128 129 130 131 132 133 134 135 136 137
class TestAutoTuneTransposeOp(OpTest):
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.python_api = paddle.transpose
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("float64"),
138
            'Out': self.inputs['X'].transpose(self.axis),
139 140 141 142 143 144 145 146 147 148 149 150 151 152
        }

    def initTestCase(self):
        fluid.core.set_autotune_range(0, 3)
        fluid.core.update_autotune_status()
        fluid.core.enable_autotune()
        self.shape = (1, 12, 256, 1)
        self.axis = (0, 3, 2, 1)

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
153
        self.check_output(no_check_set=['XShape'])
154 155 156
        fluid.core.disable_autotune()

    def test_check_grad(self):
157
        self.check_grad(['X'], 'Out')
158 159


160 161 162 163 164
class TestTransposeBF16Op(OpTest):
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.dtype = np.uint16
165
        self.python_api = paddle.transpose
166 167 168 169 170 171 172 173
        x = np.random.random(self.shape).astype("float32")

        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
174 175 176 177
            'XShape': convert_float_to_uint16(
                np.random.random(self.shape).astype("float32")
            ),
            'Out': self.inputs['X'].transpose(self.axis),
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        }

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        pass

    def initTestCase(self):
        self.shape = (3, 2)
        self.axis = (1, 0)


195 196 197 198 199 200 201
class TestTransposeOpBool(TestTransposeOp):
    def test_check_grad(self):
        pass


class TestTransposeOpBool1D(TestTransposeOpBool):
    def initTestCase(self):
202 203
        self.shape = (100,)
        self.axis = (0,)
204 205 206
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
207
            'Out': self.inputs['X'].transpose(self.axis),
208 209 210 211 212 213 214 215 216 217
        }


class TestTransposeOpBool2D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (3, 40)
        self.axis = (1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
218
            'Out': self.inputs['X'].transpose(self.axis),
219 220 221 222 223 224 225 226 227 228
        }


class TestTransposeOpBool3D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (3, 4, 10)
        self.axis = (0, 2, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
229
            'Out': self.inputs['X'].transpose(self.axis),
230 231 232 233 234 235 236 237 238 239
        }


class TestTransposeOpBool4D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
240
            'Out': self.inputs['X'].transpose(self.axis),
241 242 243 244 245 246 247 248 249 250
        }


class TestTransposeOpBool5D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
251
            'Out': self.inputs['X'].transpose(self.axis),
252 253 254 255 256 257 258 259 260 261
        }


class TestTransposeOpBool6D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
262
            'Out': self.inputs['X'].transpose(self.axis),
263 264 265 266 267 268 269 270 271 272
        }


class TestTransposeOpBool7D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
273
            'Out': self.inputs['X'].transpose(self.axis),
274 275 276 277 278 279 280 281 282 283
        }


class TestTransposeOpBool8D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
284
            'Out': self.inputs['X'].transpose(self.axis),
285 286 287
        }


288
class TestTransposeOpError(unittest.TestCase):
289
    def test_errors(self):
290
        paddle.enable_static()
291
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
292 293 294
            x = paddle.static.data(
                name='x', shape=[-1, 10, 5, 3], dtype='float64'
            )
295 296 297

            def test_x_Variable_check():
                # the Input(x)'s type must be Variable
298
                paddle.transpose("not_variable", perm=[1, 0, 2])
299 300 301 302

            self.assertRaises(TypeError, test_x_Variable_check)

            def test_x_dtype_check():
303
                # the Input(x)'s dtype must be one of [bool, float16, float32, float64, int32, int64]
G
GGBond8488 已提交
304 305
                x1 = paddle.static.data(
                    name='x1', shape=[-1, 10, 5, 3], dtype='int8'
306
                )
307
                paddle.transpose(x1, perm=[1, 0, 2])
308 309 310 311 312

            self.assertRaises(TypeError, test_x_dtype_check)

            def test_perm_list_check():
                # Input(perm)'s type must be list
313
                paddle.transpose(x, perm="[1, 0, 2]")
314 315 316 317 318 319

            self.assertRaises(TypeError, test_perm_list_check)

            def test_perm_length_and_x_dim_check():
                # Input(perm) is the permutation of dimensions of Input(input)
                # its length should be equal to dimensions of Input(input)
320
                paddle.transpose(x, perm=[1, 0, 2, 3, 4])
321 322 323 324 325

            self.assertRaises(ValueError, test_perm_length_and_x_dim_check)

            def test_each_elem_value_check():
                # Each element in Input(perm) should be less than Input(x)'s dimension
326
                paddle.transpose(x, perm=[3, 5, 7])
327 328 329

            self.assertRaises(ValueError, test_each_elem_value_check)

S
seemingwang 已提交
330

331 332 333 334 335 336 337 338 339 340
class TestTransposeApi(unittest.TestCase):
    def test_static_out(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data(name='x', shape=[2, 3, 4], dtype='float32')
            x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
            x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            x_np = np.random.random([2, 3, 4]).astype("float32")
341 342 343
            result1, result2 = exe.run(
                feed={"x": x_np}, fetch_list=[x_trans1, x_trans2]
            )
344 345
            expected_result1 = np.transpose(x_np, [1, 0, 2])
            expected_result2 = np.transpose(x_np, (2, 1, 0))
S
seemingwang 已提交
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
            np.testing.assert_array_equal(result1, expected_result1)
            np.testing.assert_array_equal(result2, expected_result2)

    def test_dygraph_out(self):
        # This is an old test before 2.0 API so we need to disable static
        # to trigger dygraph
        paddle.disable_static()
        x = paddle.randn([2, 3, 4])
        x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
        x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
        x_np = x.numpy()
        expected_result1 = np.transpose(x_np, [1, 0, 2])
        expected_result2 = np.transpose(x_np, (2, 1, 0))

        np.testing.assert_array_equal(x_trans1.numpy(), expected_result1)
        np.testing.assert_array_equal(x_trans2.numpy(), expected_result2)
        # This is an old test before 2.0 API so we enable static again after
        # dygraph test
        paddle.enable_static()
366

S
seemingwang 已提交
367

368 369 370 371 372 373 374 375
class TestTAPI(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10]).astype("float64")
376
            (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t])
377 378 379 380 381 382 383 384 385
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10, 5]).astype("float64")
386
            (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t])
387 388 389 390 391 392 393 394 395
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[1, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([1, 5]).astype("float64")
396
            (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t])
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([1, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')

            def test_x_dimension_check():
                paddle.t(x)

            self.assertRaises(ValueError, test_x_dimension_check)


434 435 436 437 438 439 440 441 442 443 444 445
class TestMoveAxis(unittest.TestCase):
    def test_moveaxis1(self):
        x_np = np.random.randn(2, 3, 4, 5, 7)
        expected = np.moveaxis(x_np, [0, 4, 3, 2], [1, 3, 2, 0])
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 4, 5, 7], dtype='float64')
            out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

446
        np.testing.assert_array_equal(out_np, expected)
447 448 449 450 451

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])
        self.assertEqual(out.shape, [4, 2, 5, 7, 3])
452
        np.testing.assert_array_equal(out.numpy(), expected)
453 454 455 456 457 458 459 460 461 462 463 464 465
        paddle.enable_static()

    def test_moveaxis2(self):
        x_np = np.random.randn(2, 3, 5)
        expected = np.moveaxis(x_np, -2, -1)
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 5], dtype='float64')
            out = x.moveaxis(-2, -1)

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

466
        np.testing.assert_array_equal(out_np, expected)
467 468 469 470 471

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = x.moveaxis(-2, -1)
        self.assertEqual(out.shape, [2, 5, 3])
472
        np.testing.assert_array_equal(out.numpy(), expected)
473 474
        paddle.enable_static()

475 476
    def test_moveaxis3(self):
        paddle.disable_static()
477 478 479
        x = paddle.to_tensor(
            [[1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j]]
        )
480 481 482 483
        out = x.moveaxis(0, 1)
        self.assertEqual(out.shape, [2, 3])
        paddle.enable_static()

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    def test_error(self):
        x = paddle.randn([2, 3, 4, 5])
        # src must have the same number with dst
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [1, 0], [2])

        # each element of src must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [1, 1], [0, 2])

        # each element of dst must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [0, 1], [2, 2])

        # each element of src must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0.5], [1])

        # each element of dst must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0], [1.5])

        # each element of src must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [-10, 1], [2, 3])

        # each element of dst must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [2, 1], [10, 3])


515 516 517 518 519 520 521 522 523 524
class TestTransposeDoubleGradCheck(unittest.TestCase):
    def transpose_wrapper(self, x):
        return paddle.transpose(x[0], [1, 0, 2])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
525
        data = paddle.static.data('data', [2, 3, 4], dtype)
526 527 528 529
        data.persistable = True
        out = paddle.transpose(data, [1, 0, 2])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

530 531 532 533 534 535
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.transpose_wrapper, [data], out, x_init=[data_arr], place=place
        )
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeTripleGradCheck(unittest.TestCase):
    def transpose_wrapper(self, x):
        return paddle.transpose(x[0], [1, 0, 2])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
556
        data = paddle.static.data('data', [2, 3, 4], dtype)
557 558 559 560
        data.persistable = True
        out = paddle.transpose(data, [1, 0, 2])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

561 562 563 564 565 566
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.transpose_wrapper, [data], out, x_init=[data_arr], place=place
        )
567 568 569 570 571 572 573 574 575 576

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


577 578 579 580 581 582 583
class TestTransposeAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()

        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.transpose(x, [])
584 585
        if hasattr(out, 'retain_grads'):
            out.retain_grads()
586 587 588 589 590 591 592 593 594
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [])

        paddle.enable_static()


X
xzl 已提交
595
if __name__ == '__main__':
H
hong 已提交
596
    paddle.enable_static()
X
xzl 已提交
597
    unittest.main()