未验证 提交 d3f52bcc 编写于 作者: C Charles-hit 提交者: GitHub

backward refuse foward part1 (#45868)

* support more op for high level

* add unit test for high level op

* remove unnecessary comments
上级 7085cb97
......@@ -692,7 +692,8 @@ def get_eager_double_grad(func,
allow_unused=True)
if return_mid_result:
return dd_inputs, inputs + ddys
return [dd_input for dd_input in dd_inputs
if dd_input is not None], inputs + ddys
else:
return [
dd_input.numpy() for dd_input in dd_inputs if dd_input is not None
......@@ -857,8 +858,13 @@ def get_eager_triple_grad(func,
dddy = paddle.ones(shape=dd_yi.shape, dtype=dd_yi.dtype)
dddy.stop_gradient = False
dddys.append(dddy)
ddd_inputs = paddle.grad(outputs=dd_y, inputs=dd_x, grad_outputs=dddys)
return [ddd_input.numpy() for ddd_input in ddd_inputs]
ddd_inputs = paddle.grad(outputs=dd_y,
inputs=dd_x,
grad_outputs=dddys,
allow_unused=True)
return [
ddd_input.numpy() for ddd_input in ddd_inputs if ddd_input is not None
]
def triple_grad_check_for_dygraph(func,
......
......@@ -23,6 +23,9 @@ import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
from paddle.fluid.framework import _test_eager_guard
from test_sum_op import TestReduceOPTensorAxisBase
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
np.random.seed(10)
......@@ -433,6 +436,80 @@ class TestMeanWithTensorAxis2(TestReduceOPTensorAxisBase):
]
class TestMeanDoubleGradCheck(unittest.TestCase):
def mean_wrapper(self, x):
return paddle.mean(x[0])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [3, 4, 5], False, dtype)
data.persistable = True
out = paddle.mean(data)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.mean_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMeanTripleGradCheck(unittest.TestCase):
def mean_wrapper(self, x):
return paddle.mean(x[0])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [3, 4, 5], False, dtype)
data.persistable = True
out = paddle.mean(data)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.mean_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
......@@ -22,6 +22,9 @@ import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.static import Program, program_guard
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
class TestScaleOp(OpTest):
......@@ -244,5 +247,79 @@ class TestScaleInplaceApiDygraph(TestScaleApiDygraph):
return x.scale_(scale, bias)
class TestScaleDoubleGradCheck(unittest.TestCase):
def scale_wrapper(self, x):
return paddle.scale(x[0], scale=2.0)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.scale(data, 2.0)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.scale_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestScaleTripleGradCheck(unittest.TestCase):
def scale_wrapper(self, x):
return paddle.scale(x[0], scale=2.0)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.scale(data, 2.0)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.scale_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
unittest.main()
......@@ -22,6 +22,9 @@ import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from op_test import OpTest, convert_float_to_uint16
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
paddle.enable_static()
......@@ -224,5 +227,79 @@ class API_TestDygraphSqueezeInplace(API_TestDygraphSqueeze):
self.squeeze = paddle.squeeze_
class TestSqueezeDoubleGradCheck(unittest.TestCase):
def squeeze_wrapper(self, x):
return paddle.squeeze(x[0])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.squeeze(data)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.squeeze_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestSqueezeTripleGradCheck(unittest.TestCase):
def squeeze_wrapper(self, x):
return paddle.squeeze(x[0])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.squeeze(data)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.squeeze_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
unittest.main()
......@@ -30,6 +30,9 @@ from paddle.fluid.tests.unittests.op_test import (OpTest,
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid.framework import _test_eager_guard
import paddle.inference as paddle_infer
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
class TestSumOp(OpTest):
......@@ -580,6 +583,86 @@ class TestSumWithTensorAxis1(TestReduceOPTensorAxisBase):
]
class TestAddNDoubleGradCheck(unittest.TestCase):
def add_n_wrapper(self, x):
return paddle.add_n(x)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data1 = layers.data('data1', [3, 4, 5], False, dtype)
data1.persistable = True
data2 = layers.data('data2', [3, 4, 5], False, dtype)
data2.persistable = True
out = paddle.add_n([data1, data2])
data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
gradient_checker.double_grad_check([data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(
self.add_n_wrapper, [data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestAddNTripleGradCheck(unittest.TestCase):
def add_n_wrapper(self, x):
return paddle.add_n(x)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data1 = layers.data('data1', [3, 4, 5], False, dtype)
data1.persistable = True
data2 = layers.data('data2', [3, 4, 5], False, dtype)
data2.persistable = True
out = paddle.add_n([data1, data2])
data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
gradient_checker.triple_grad_check([data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(
self.add_n_wrapper, [data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
enable_static()
unittest.main()
......@@ -21,6 +21,9 @@ import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
paddle.enable_static()
......@@ -526,6 +529,80 @@ class TestMoveAxis(unittest.TestCase):
paddle.moveaxis(x, [2, 1], [10, 3])
class TestTransposeDoubleGradCheck(unittest.TestCase):
def transpose_wrapper(self, x):
return paddle.transpose(x[0], [1, 0, 2])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3, 4], False, dtype)
data.persistable = True
out = paddle.transpose(data, [1, 0, 2])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.transpose_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestTransposeTripleGradCheck(unittest.TestCase):
def transpose_wrapper(self, x):
return paddle.transpose(x[0], [1, 0, 2])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3, 4], False, dtype)
data.persistable = True
out = paddle.transpose(data, [1, 0, 2])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.transpose_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
......@@ -21,6 +21,9 @@ import paddle
import paddle.fluid as fluid
from op_test import OpTest, convert_float_to_uint16
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
paddle.enable_static()
......@@ -309,5 +312,79 @@ class API_TestDygraphUnSqueezeInplace(API_TestDygraphUnSqueeze):
self.unsqueeze = paddle.unsqueeze_
class TestUnsqueezeDoubleGradCheck(unittest.TestCase):
def unsqueeze_wrapper(self, x):
return paddle.unsqueeze(x[0], [0, 2])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3, 4], False, dtype)
data.persistable = True
out = paddle.unsqueeze(data, [0, 2])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.unsqueeze_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestUnsqueezeTripleGradCheck(unittest.TestCase):
def unsqueeze_wrapper(self, x):
return paddle.unsqueeze(x[0], [0, 2])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3, 4], False, dtype)
data.persistable = True
out = paddle.unsqueeze(data, [0, 2])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.unsqueeze_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册