test_transpose_op.py 16.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

X
xzl 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
23
import paddle.fluid.core as core
X
xzl 已提交
24

25
paddle.enable_static()
X
xzl 已提交
26

S
seemingwang 已提交
27

28
class TestTransposeOp(OpTest):
29

X
xzl 已提交
30
    def setUp(self):
31
        self.init_op_type()
32
        self.initTestCase()
H
hong 已提交
33
        self.python_api = paddle.transpose
34
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
35 36 37 38
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
39
        self.outputs = {
40
            'XShape': np.random.random(self.shape).astype("float64"),
41 42
            'Out': self.inputs['X'].transpose(self.axis)
        }
43

44 45 46 47
    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

48
    def test_check_output(self):
H
hong 已提交
49
        self.check_output(no_check_set=['XShape'], check_eager=True)
50 51

    def test_check_grad(self):
H
hong 已提交
52
        self.check_grad(['X'], 'Out', check_eager=True)
53 54

    def initTestCase(self):
Z
zhupengyang 已提交
55
        self.shape = (3, 40)
56 57 58
        self.axis = (1, 0)


59
class TestCase0(TestTransposeOp):
60

61
    def initTestCase(self):
Z
zhupengyang 已提交
62
        self.shape = (100, )
63 64 65
        self.axis = (0, )


66
class TestCase1(TestTransposeOp):
67

68
    def initTestCase(self):
Z
zhupengyang 已提交
69
        self.shape = (3, 4, 10)
70 71 72 73
        self.axis = (0, 2, 1)


class TestCase2(TestTransposeOp):
74

75 76 77 78
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)

X
xzl 已提交
79

80
class TestCase3(TestTransposeOp):
81

82 83 84
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
X
xzl 已提交
85 86


87
class TestCase4(TestTransposeOp):
88

89 90 91
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
X
xzl 已提交
92 93


94
class TestCase5(TestTransposeOp):
95

96 97 98 99 100 101
    def initTestCase(self):
        self.shape = (2, 16, 96)
        self.axis = (0, 2, 1)


class TestCase6(TestTransposeOp):
102

103 104 105 106 107 108
    def initTestCase(self):
        self.shape = (2, 10, 12, 16)
        self.axis = (3, 1, 2, 0)


class TestCase7(TestTransposeOp):
109

110 111 112 113 114
    def initTestCase(self):
        self.shape = (2, 10, 2, 16)
        self.axis = (0, 1, 3, 2)


115
class TestCase8(TestTransposeOp):
116

117 118 119 120 121 122
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6, 7)


class TestCase9(TestTransposeOp):
123

124 125 126 127 128
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)


129
class TestTransposeBF16Op(OpTest):
130

131 132 133 134 135 136 137 138 139 140 141 142
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.dtype = np.uint16
        x = np.random.random(self.shape).astype("float32")

        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
143 144
            'XShape':
            convert_float_to_uint16(
145
                np.random.random(self.shape).astype("float32")),
146 147
            'Out':
            self.inputs['X'].transpose(self.axis)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        }

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        pass

    def initTestCase(self):
        self.shape = (3, 2)
        self.axis = (1, 0)


165
class TestTransposeOpBool(TestTransposeOp):
166

167 168 169 170 171
    def test_check_grad(self):
        pass


class TestTransposeOpBool1D(TestTransposeOpBool):
172

173 174 175 176 177 178 179 180 181 182 183
    def initTestCase(self):
        self.shape = (100, )
        self.axis = (0, )
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool2D(TestTransposeOpBool):
184

185 186 187 188 189 190 191 192 193 194 195
    def initTestCase(self):
        self.shape = (3, 40)
        self.axis = (1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool3D(TestTransposeOpBool):
196

197 198 199 200 201 202 203 204 205 206 207
    def initTestCase(self):
        self.shape = (3, 4, 10)
        self.axis = (0, 2, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool4D(TestTransposeOpBool):
208

209 210 211 212 213 214 215 216 217 218 219
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool5D(TestTransposeOpBool):
220

221 222 223 224 225 226 227 228 229 230 231
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool6D(TestTransposeOpBool):
232

233 234 235 236 237 238 239 240 241 242 243
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool7D(TestTransposeOpBool):
244

245 246 247 248 249 250 251 252 253 254 255
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool8D(TestTransposeOpBool):
256

257 258 259 260 261 262 263 264 265 266
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


267
class TestTransposeOpError(unittest.TestCase):
268

269
    def test_errors(self):
270
        paddle.enable_static()
271
        with program_guard(Program(), Program()):
272
            x = fluid.layers.data(name='x', shape=[10, 5, 3], dtype='float64')
273 274 275 276 277 278 279 280

            def test_x_Variable_check():
                # the Input(x)'s type must be Variable
                fluid.layers.transpose("not_variable", perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_Variable_check)

            def test_x_dtype_check():
281
                # the Input(x)'s dtype must be one of [bool, float16, float32, float64, int32, int64]
282 283 284
                x1 = fluid.layers.data(name='x1',
                                       shape=[10, 5, 3],
                                       dtype='int8')
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
                fluid.layers.transpose(x1, perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_dtype_check)

            def test_perm_list_check():
                # Input(perm)'s type must be list
                fluid.layers.transpose(x, perm="[1, 0, 2]")

            self.assertRaises(TypeError, test_perm_list_check)

            def test_perm_length_and_x_dim_check():
                # Input(perm) is the permutation of dimensions of Input(input)
                # its length should be equal to dimensions of Input(input)
                fluid.layers.transpose(x, perm=[1, 0, 2, 3, 4])

            self.assertRaises(ValueError, test_perm_length_and_x_dim_check)

            def test_each_elem_value_check():
                # Each element in Input(perm) should be less than Input(x)'s dimension
                fluid.layers.transpose(x, perm=[3, 5, 7])

            self.assertRaises(ValueError, test_each_elem_value_check)

S
seemingwang 已提交
308

309
class TestTransposeApi(unittest.TestCase):
310

311 312 313 314 315 316 317 318 319
    def test_static_out(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data(name='x', shape=[2, 3, 4], dtype='float32')
            x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
            x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            x_np = np.random.random([2, 3, 4]).astype("float32")
S
seemingwang 已提交
320 321
            result1, result2 = exe.run(feed={"x": x_np},
                                       fetch_list=[x_trans1, x_trans2])
322 323
            expected_result1 = np.transpose(x_np, [1, 0, 2])
            expected_result2 = np.transpose(x_np, (2, 1, 0))
S
seemingwang 已提交
324

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
            np.testing.assert_array_equal(result1, expected_result1)
            np.testing.assert_array_equal(result2, expected_result2)

    def test_dygraph_out(self):
        # This is an old test before 2.0 API so we need to disable static
        # to trigger dygraph
        paddle.disable_static()
        x = paddle.randn([2, 3, 4])
        x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
        x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
        x_np = x.numpy()
        expected_result1 = np.transpose(x_np, [1, 0, 2])
        expected_result2 = np.transpose(x_np, (2, 1, 0))

        np.testing.assert_array_equal(x_trans1.numpy(), expected_result1)
        np.testing.assert_array_equal(x_trans2.numpy(), expected_result2)
        # This is an old test before 2.0 API so we enable static again after
        # dygraph test
        paddle.enable_static()
344

S
seemingwang 已提交
345

346
class TestTAPI(unittest.TestCase):
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10, 5]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[1, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([1, 5]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([1, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')

            def test_x_dimension_check():
                paddle.t(x)

            self.assertRaises(ValueError, test_x_dimension_check)


413
class TestMoveAxis(unittest.TestCase):
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
    def test_moveaxis1(self):
        x_np = np.random.randn(2, 3, 4, 5, 7)
        expected = np.moveaxis(x_np, [0, 4, 3, 2], [1, 3, 2, 0])
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 4, 5, 7], dtype='float64')
            out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

        self.assertEqual(np.array_equal(out_np, expected), True)

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])
        self.assertEqual(out.shape, [4, 2, 5, 7, 3])
        self.assertEqual(np.array_equal(out.numpy(), expected), True)
        paddle.enable_static()

    def test_moveaxis2(self):
        x_np = np.random.randn(2, 3, 5)
        expected = np.moveaxis(x_np, -2, -1)
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 5], dtype='float64')
            out = x.moveaxis(-2, -1)

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

        self.assertEqual(np.array_equal(out_np, expected), True)

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = x.moveaxis(-2, -1)
        self.assertEqual(out.shape, [2, 5, 3])
        self.assertEqual(np.array_equal(out.numpy(), expected), True)
        paddle.enable_static()

455 456
    def test_moveaxis3(self):
        paddle.disable_static()
457 458
        x = paddle.to_tensor([[1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j],
                              [1 + 1j, -1 - 1j]])
459 460 461 462
        out = x.moveaxis(0, 1)
        self.assertEqual(out.shape, [2, 3])
        paddle.enable_static()

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    def test_error(self):
        x = paddle.randn([2, 3, 4, 5])
        # src must have the same number with dst
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [1, 0], [2])

        # each element of src must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [1, 1], [0, 2])

        # each element of dst must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [0, 1], [2, 2])

        # each element of src must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0.5], [1])

        # each element of dst must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0], [1.5])

        # each element of src must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [-10, 1], [2, 3])

        # each element of dst must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [2, 1], [10, 3])


X
xzl 已提交
494
if __name__ == '__main__':
H
hong 已提交
495
    paddle.enable_static()
X
xzl 已提交
496
    unittest.main()